Krull modules (Q2854034)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Krull modules |
scientific article; zbMATH DE number 6215992
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Krull modules |
scientific article; zbMATH DE number 6215992 |
Statements
17 October 2013
0 references
t-submodules
0 references
Dedekind module
0 references
Krull module
0 references
essential domain
0 references
\(v\)-Prüfer module
0 references
\(\pi\)-module
0 references
Mori module
0 references
factorial module
0 references
faithful multiplication module
0 references
0.9352165
0 references
0.93180704
0 references
0 references
0 references
0.91529465
0 references
0.9121694
0 references
Krull modules (English)
0 references
The authors generalize definitions of some classes of commutative domains related to Krull domains (such as \(v\)-Prüfer, essential, \(\pi\)-, Mori, Krull) to appropriate definitions for the classes of torsion-free modules; these generalizations continue work in this area by other authors. A number of domain properties for those classes is translated into the corresponding classes of modules, particularly for a subclass of finitely generated torsion-free modules, namely faithful multiplication modules. One of the results is as follows: Let \(M\) be a faithful multiplication module over an integral domain \(R\) and let \(X\) be one of the following phrases: \(v\)-Prüfer, essential, \(\pi\)-, Mori, Krull. Then \(M\) is an \(X\)-module iff \(R\) is an \(X\)-domain. Krull, Dedekind \(\pi\) and factorial faithful multiplication modules are characterized by equivalent conditions.
0 references