Sharp threshold asymptotics for the emergence of additive bases (Q2855588)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sharp threshold asymptotics for the emergence of additive bases |
scientific article; zbMATH DE number 6220301
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sharp threshold asymptotics for the emergence of additive bases |
scientific article; zbMATH DE number 6220301 |
Statements
25 October 2013
0 references
additive basis
0 references
threshold asymptotics
0 references
random set
0 references
Poisson approximation
0 references
Stein-Chen method
0 references
math.CO
0 references
math.NT
0 references
math.PR
0 references
Sharp threshold asymptotics for the emergence of additive bases (English)
0 references
The paper is devoted to the random additive bases. We select each integer \(m\in\{0,1,2,\ldots,n\}\) independently with some probability \(p_n\) depen\-ding only on \(n\). In such a way, we obtain a random set \(\mathcal{A}\). Let \(\alpha\in(0,1)\) and \(X\) be the number of integers in the interval \([\alpha n, (2-\alpha)n]\) that cannot be written in the form \(x_1+x_2+\ldots +x_k,\;x_1,\ldots,x_k\in\mathcal{A}\). We observe that \(X=0\) if and only if \(\mathcal{A}\) is a truncated additive \(k\)-basis, i.e. \(m=x_1+x_2+\ldots +x_k\), \ \( x_1,\ldots,x_k\in\mathcal{A}\) for each \(m\in[\alpha n, (2-\alpha)n]\). In the paper, the cases when \(k=2\) and \(k\ge 2\) are considered separately. The following statement is typical.NEWLINENEWLINESuppose that \(k=2\), and NEWLINE\[CARRIAGE_RETURNNEWLINEp_n=\sqrt{((2\log n-2\log\log n)/\alpha+A_n)/n}CARRIAGE_RETURNNEWLINE\]NEWLINE with some suitable sequence \(A_n\). When \(n\rightarrow\infty\), there are three distinct cases:NEWLINENEWLINE(i) if \(A_n\rightarrow\infty\) then \(\mathbb{P}(X=0)\rightarrow 1\);NEWLINENEWLINE(ii) if \(A_n\rightarrow -\infty\) then \(\mathbb{P}(X=0)\rightarrow 0\);NEWLINENEWLINE(iii) if \(A_n\rightarrow A\) then \(\mathbb{P}(X=0)\rightarrow\exp\{-2\alpha\exp\{-\alpha A/2\}\}\).
0 references