Multiple trigonometric sums (Q2857876)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Multiple trigonometric sums |
scientific article; zbMATH DE number 6229064
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multiple trigonometric sums |
scientific article; zbMATH DE number 6229064 |
Statements
19 November 2013
0 references
complete system of equations
0 references
trigonometric sum
0 references
multiple trigonometric sum
0 references
trigonometric integral
0 references
multiple trigonometric integral
0 references
singular integral
0 references
Weil's sum
0 references
Multiple trigonometric sums (English)
0 references
Let \(r\geqslant 1\), \(n\geqslant 2\), \(k\geqslant 1\) and \(P\geqslant 1\) be integer numbers. Let \(J_n(k,P)\) denote the number of solutions of the system NEWLINE\[NEWLINE\begin{cases} &\displaystyle\sum_{j=1}^{2k}(-1)^jx_{1,j}^{t_1}x_{2,j}^{t_2}\dots x_{r,j}^{t_r}=0;\\ & t_1=0,1,\dots, n;\;t_2=0,1,\dots,n;\;\dots ;\;t_r=0,1,\dots,n \end{cases}NEWLINE\]NEWLINE consisting of \(M=(n+1)^r\) equations, where it is assumed that the unknown variables \(x_{i,j}\), (\(i=1,2,\dots, r\), \(j=1,2,\dots, 2k\)) belong to the set \(\{1,2,\dots, P\}\).NEWLINENEWLINEThe author proves that NEWLINE\[NEWLINE J_n(k,P)=\sigma\theta P^{2kr-\frac{rnM}{2}} +O\left(P^{2kr-\frac{rnM}{2}-\frac{1}{10M}}\right)+O\left(P^{2kr-\frac{rnM}{2}-\frac{1}{500r^2\log(rn)}}\right)NEWLINE\]NEWLINE in the case when \(k\geqslant 10Mr^2n\log(rn)\), where \(\sigma\) is some singular series and \(\theta\) is some singular integral.NEWLINENEWLINEThe result is derived using the main value theorem for multiple trigonometric sums and various suitable estimates for multiple trigonometric sums and trigonometric integrals.
0 references