Multiple trigonometric sums (Q2857876)

From MaRDI portal





scientific article; zbMATH DE number 6229064
Language Label Description Also known as
English
Multiple trigonometric sums
scientific article; zbMATH DE number 6229064

    Statements

    0 references
    19 November 2013
    0 references
    complete system of equations
    0 references
    trigonometric sum
    0 references
    multiple trigonometric sum
    0 references
    trigonometric integral
    0 references
    multiple trigonometric integral
    0 references
    singular integral
    0 references
    Weil's sum
    0 references
    Multiple trigonometric sums (English)
    0 references
    Let \(r\geqslant 1\), \(n\geqslant 2\), \(k\geqslant 1\) and \(P\geqslant 1\) be integer numbers. Let \(J_n(k,P)\) denote the number of solutions of the system NEWLINE\[NEWLINE\begin{cases} &\displaystyle\sum_{j=1}^{2k}(-1)^jx_{1,j}^{t_1}x_{2,j}^{t_2}\dots x_{r,j}^{t_r}=0;\\ & t_1=0,1,\dots, n;\;t_2=0,1,\dots,n;\;\dots ;\;t_r=0,1,\dots,n \end{cases}NEWLINE\]NEWLINE consisting of \(M=(n+1)^r\) equations, where it is assumed that the unknown variables \(x_{i,j}\), (\(i=1,2,\dots, r\), \(j=1,2,\dots, 2k\)) belong to the set \(\{1,2,\dots, P\}\).NEWLINENEWLINEThe author proves that NEWLINE\[NEWLINE J_n(k,P)=\sigma\theta P^{2kr-\frac{rnM}{2}} +O\left(P^{2kr-\frac{rnM}{2}-\frac{1}{10M}}\right)+O\left(P^{2kr-\frac{rnM}{2}-\frac{1}{500r^2\log(rn)}}\right)NEWLINE\]NEWLINE in the case when \(k\geqslant 10Mr^2n\log(rn)\), where \(\sigma\) is some singular series and \(\theta\) is some singular integral.NEWLINENEWLINEThe result is derived using the main value theorem for multiple trigonometric sums and various suitable estimates for multiple trigonometric sums and trigonometric integrals.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references