Remainder estimation in an approximate functional equation (Q2857900)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Remainder estimation in an approximate functional equation |
scientific article; zbMATH DE number 6229087
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Remainder estimation in an approximate functional equation |
scientific article; zbMATH DE number 6229087 |
Statements
19 November 2013
0 references
functional equation
0 references
error term
0 references
zeta-function
0 references
Remainder estimation in an approximate functional equation (English)
0 references
In the paper, the remainder estimation in the Hardy-Littlewood type approximate functional equation for the Riemann zeta-function \(\zeta(s)\), \(s=\sigma+it\), is obtained. It is proved, that, for \(\sigma>0\), \(t>0\), \(x \geq \frac{t}{\pi}\) and semi-integer \(x\), the following equation NEWLINE\[NEWLINE \zeta(s)=\sum_{n \leq x} \frac{1}{n^s}-\frac{x^{1-s}}{1-s}+\frac{s\zeta(2)}{4\pi^2 x^{s+1}}+\frac{s(s+1)(s+2)}{x^{s+3}2^3 \pi^4}\zeta(4)\bigg(1-\frac{1}{2^3}\bigg)+R_4 NEWLINE\]NEWLINE holds with NEWLINE\[NEWLINE R_4=s(s+1)(s+2)(s+3)\int_{x}^{\infty}\frac{1}{y^{s+4}}\sum_{k=1}^{\infty}\frac{\cos 2 \pi ky}{8\pi^4 k^4}\,dy. NEWLINE\]
0 references