On the distribution of elements of semigroups of natural numbers (Q2857932)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the distribution of elements of semigroups of natural numbers |
scientific article; zbMATH DE number 6229108
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the distribution of elements of semigroups of natural numbers |
scientific article; zbMATH DE number 6229108 |
Statements
19 November 2013
0 references
multiplicative subgroups
0 references
Buchstab function
0 references
smooth numbers
0 references
asymptotic estimates
0 references
distribution of integers without large prime factors
0 references
short intervals
0 references
On the distribution of elements of semigroups of natural numbers (English)
0 references
Let \(A\) be a multiplicative subgroup of positive integers such that \(|\{n\in A; n\leq q\}|<g^\nu\) for some real \(q\) and \(\nu<1\). The author proves the upper estimates for \(f(x)=|A\cap [1,x]|\) of the following type for \(x=(\log q)^u\):NEWLINENEWLINE (1) if \(\log\log x=o(\log\log q)\) then NEWLINE\[NEWLINE\frac{f(x)}{x}\leq \exp\{-(C+o(1))u(1-\nu^2)\log(u(1-v)^2)\}NEWLINE\]NEWLINE with an absolute constant \(C\);NEWLINENEWLINE (2) if \(\gamma=(\log\log x)/(\log\log q)\) and \(\log x=o(\log q)\) then NEWLINE\[NEWLINEf(x)\leq x^{1-\max\{L_\gamma,C_\gamma\}+o(1)}\quad\text{as}\;q\to\infty,NEWLINE\]NEWLINE with explicitly given constants \(L_\gamma\) and \(C_\gamma\) depending on \(\gamma\) and \(\nu\).
0 references