On matrix pencils determined by stable lines (Q2858100)

From MaRDI portal





scientific article; zbMATH DE number 6229342
Language Label Description Also known as
English
On matrix pencils determined by stable lines
scientific article; zbMATH DE number 6229342

    Statements

    0 references
    19 November 2013
    0 references
    Kronecker quiver
    0 references
    projective space
    0 references
    classification of pairs of linear maps
    0 references
    On matrix pencils determined by stable lines (English)
    0 references
    Let \(V\) and \(W\) be vector spaces. Let \( \mathbb{P}(V)\) and \( \mathbb{P}(W)\) denote the set of one-dimensional subspaces of \(V\) and \(W\), respectively. For a subspace \(U\) of Hom\((V,W)\), one defines NEWLINE\[NEWLINE \mathcal{L}(U)=\{(L,M) \mid f(L) \subseteq M \text{ for all } f \in U\} \subset \mathbb{P}(V) \times \mathbb{P}(W). NEWLINE\]NEWLINE For a subset \(X\) of \(\mathbb{P}(V) \times \mathbb{P}(W)\), one defines NEWLINE\[NEWLINE \mathcal{F}(X) = \{ f\mid f(L) \subseteq M \text{ for all } (L,M) \in X\}. NEWLINE\]NEWLINE This paper studies the following question which naturally arises from these two definitions, NEWLINE\[NEWLINE \text{When } \mathcal{F}(\mathcal{L}(U))=U?NEWLINE\]NEWLINE This is true when \(\dim(U) = 1\) and \(\dim(W) >1\) (see Proposition 1, Section 1), but not true generally.NEWLINENEWLINEThe goal of the paper is to introduce a classification of the two-dimensional subspaces \(U\) for which \(\mathcal{F}(\mathcal{L}(U))=U\) (see Section 4). This classification is based on the Kronecker's classification for pairs of linear maps. Any indecomposable pair of linear maps NEWLINE\[NEWLINE\mathbf{V}= (V \underset {t}{\overset{s}\rightrightarrows} W) NEWLINE\]NEWLINE over an algebraically closed field is isomorphic to one of the following pairs: NEWLINE\[NEWLINE \mathbf{P}_n, \,\mathbf{Q}_n, \,\mathbf{R}_n(\lambda),\,\,n\geqslant 1, NEWLINE\]NEWLINE (for details, see Page 210). Thus, Proposition 9 introduces a formula for the dimension of \(\mathcal{F}(\mathcal{L}(\mathbf{V}))\), with \(\dim (W)>1\) and NEWLINE\[NEWLINE \mathbf{V}=\bigoplus_ {i=1}^a \mathbf{P}_{n_i} \oplus \bigoplus_ {i=1}^b \mathbf{Q}_{m_i} \oplus \bigoplus_ {i=1}^c \mathbf{R}_{l_i}(\lambda_i) . NEWLINE\]NEWLINE As a corollary of this proposition, the wanted classification is deduced: \( \mathcal{F}(\mathcal{L}(\mathbf{V}))=\mathbf{V} \) if and only if \(\mathbf{V} \) is isomorphic to one of the following objects:NEWLINENEWLINE\( \mathbf{P}_{1} \oplus \mathbf{Q}_{0}^b\), \(b\geqslant 0\),NEWLINENEWLINE\(\mathbf{P}_{0}^a \oplus \bigoplus_ {i=1}^b \mathbf{Q}_{m_i} \oplus \bigoplus_ {i=1}^c \mathbf{R}_{1}(\lambda_i)\), \(a\geqslant 0\), some \(m_i>0\), \(c\geqslant 0\),NEWLINENEWLINE\(\mathbf{P}_{0}^a \oplus \mathbf{Q}_{0}^b \oplus \mathbf{R}_{1}(\lambda_1)^{c_1} \oplus \mathbf{R}_{1}(\lambda_2)^{c_2}\), \(a\geqslant 0\), \(b\geqslant 0\), \(c_1>0\), \(c_2>0\), \(\lambda_1\neq \lambda_2\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references