Some constructions of bi-Koszul algebras. (Q2859276)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some constructions of bi-Koszul algebras. |
scientific article; zbMATH DE number 6223406
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some constructions of bi-Koszul algebras. |
scientific article; zbMATH DE number 6223406 |
Statements
7 November 2013
0 references
bi-Koszul algebras
0 references
connected graded algebras
0 references
graded modules
0 references
resolutions
0 references
global dimension
0 references
Ore extensions
0 references
Some constructions of bi-Koszul algebras. (English)
0 references
A connected graded associative algebra \(A\) over a field \(k\) is bi-Koszul of type \(d\) if the trivial \(A\)-module \(k\) has a minimal free resolution \(P\) in which \(P_n\) is generated by elements of bi-degree \(\Delta(n)\) for some specific function \(\Delta\colon\mathbb N\to\mathbb N\times\mathbb N\). Suppose that \(D\) is a normal extension of \(A\) such that \(D/Dz=A\) and \(z\) has degree 1. Then \(D\) is a bi-Koszul algebra of type \(d\) if and only if \(A\) is a 3-Koszul algebra of global dimension at most 3 in the sense of \textit{R. Berger} [J. Algebra 239, No. 2, 705-734 (2001; Zbl 1035.16023)]. In this case \(d=2\) and \(\text{gl\,}D=\text{gl\,}A+1\). In particular let \(D=A[z;\sigma,\delta]\) be an Ore extension. Then \(D\) is bi-Koszul of type \(d\) if and only if \(A\) is 3-Koszul, \(\text{gl\,}A\leqslant 3\). Moreover \(\text{gl\,}D=\text{gl\,}A+1\) and \(d=2\).
0 references