Weighted divisor sums and Bessel function series. III (Q2861473)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weighted divisor sums and Bessel function series. III |
scientific article; zbMATH DE number 6224207
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weighted divisor sums and Bessel function series. III |
scientific article; zbMATH DE number 6224207 |
Statements
8 November 2013
0 references
circle problem
0 references
divisor problem
0 references
Bessel functions
0 references
Ramanujan's lost notebook
0 references
trigonometric series
0 references
0.9751871
0 references
0.9724591
0 references
0.97053504
0 references
0.9525033
0 references
0.9332672
0 references
0.88186026
0 references
0.8773433
0 references
0.86763954
0 references
0 references
Weighted divisor sums and Bessel function series. III (English)
0 references
In previous papers the authors have proved two identities due to \textit{S. Ramanujan} [The Lost Notebook and other unpublished papers. With an introduction by George E. Andrews. Berlin: Springer-Verlag; New Delhi: Narosa Publishing House. (1988; Zbl 0639.01023)] and the methods developed to that end (cf. their paper in [Adv. Math. 229, No. 3, 2055--2097 (2012; Zbl 1236.33010)]) are now used to prove new identities between Bessel series and finite sums of products ot two trigonometric seriesNEWLINENEWLINELet NEWLINE\[NEWLINEI_{\nu}(z)=-Y_{\nu}(z)-{2\over \pi}\,K_{\nu}(z),\eqno{(\ast)}NEWLINE\]NEWLINE where \(Y_{\nu}(z)\) is the Bessel function of the second kind of order \(\nu\) and \(K_{\nu}(z)\) the modified Bessel function of order \(\nu\). The results are given in three theorems, where in the infinite double sums the product \(nm\) of the indices \(n\) and \(m\) goes to infinity (the authors state that ``it seems very difficult to prove corresponding theorems wherein the series are iterated'').NEWLINENEWLINETheorem 2.1. Let \(I_1(x)\) be defined by \((\ast)\). If \(0<\theta, \sigma<1\) and \(x>0\), then NEWLINE\[NEWLINE \begin{multlined} {\sum_{n,m\leq x}}' \cos{(2\pi n\theta)}\cos{(2\pi m\sigma)} ={1\over 4}\\ +{\sqrt{x}\over 4} \sum_{n,m\geq 0} \Bigg\{{I_1(4\pi\sqrt{(n+\theta)(m+\sigma)x})\over \sqrt{(n+\theta)(m+\sigma}} +{I_1(4\pi\sqrt{(n+1-\theta)(m+\sigma)x})\over \sqrt{(n+1-\theta)(m+\sigma}} \\ +{I_1(4\pi\sqrt{(n+\theta)(m+1-\sigma)x})\over \sqrt{(n+\theta)(m+1-\sigma}} +{I_1(4\pi\sqrt{(n+1-\theta)(m+1-\sigma)x})\over \sqrt{(n+1-\theta)(m+1-\sigma}}\Bigg\}. \end{multlined} NEWLINE\]NEWLINE Theorem 2.2. Let \(J_{\nu}(x)\) denote the ordinary Bessel function of order \(\nu\). If \(0<\theta, \sigma<1\) and \(x>0\), then NEWLINE\[NEWLINE \begin{multlined} {\sum_{n,m\leq x}}' \cos{(2\pi n\theta)}\sin{(2\pi m\sigma)} =-{\cot{(\pi\sigma)}\over 4}\\ +{\sqrt{x}\over 4} \sum_{n,m\geq 0} \Bigg\{{J_1(4\pi\sqrt{(n+\theta)(m+\sigma)x})\over \sqrt{(n+\theta)(m+\sigma}} +{J_1(4\pi\sqrt{(n+1-\theta)(m+\sigma)x})\over \sqrt{(n+1-\theta)(m+\sigma}} \\ -{J_1(4\pi\sqrt{(n+\theta)(m+1-\sigma)x})\over \sqrt{(n+\theta)(m+1-\sigma}} -{J_1(4\pi\sqrt{(n+1-\theta)(m+1-\sigma)x})\over \sqrt{(n+1-\theta)(m+1-\sigma}}\Bigg\}. \end{multlined} NEWLINE\]NEWLINE Theorem 2.3. If \(0<\theta, \sigma<1\) and \(x>0\), then NEWLINE\[NEWLINE \begin{multlined} {\sum_{n,m\leq x}}' \sin{(2\pi n\theta)}\sin{(2\pi m\sigma)} =\\ {x\sqrt{x}\over 4} \sum_{n,m\geq 0} \Bigg\{{T_{3/2}(4\pi^2\sqrt{(n+\theta)(m+\sigma)x})\over \sqrt{(n+\theta)(m+\sigma}} -{T_{3/2}(4\pi^2\sqrt{(n+1-\theta)(m+\sigma)x})\over \sqrt{(n+1-\theta)(m+\sigma}} \\ -{T_{3/2}(4\pi^2\sqrt{(n+\theta)(m+1-\sigma)x})\over \sqrt{(n+\theta)(m+1-\sigma}} +{T_{3/2}(4\pi^2\sqrt{(n+1-\theta)(m+1-\sigma)x})\over \sqrt{(n+1-\theta)(m+1-\sigma}}\Bigg\}. \end{multlined} NEWLINE\]NEWLINE Here NEWLINE\[NEWLINET_{3/2}(x)=K_{3/2}(x;{1\over 2},2).NEWLINE\]NEWLINE Reviewer's remark: In the paper an integral formula is stated for \(T_{3/2}(x)\) that gives `an uneasy feeling'.
0 references