Weighted divisor sums and Bessel function series. III (Q2861473)

From MaRDI portal





scientific article; zbMATH DE number 6224207
Language Label Description Also known as
English
Weighted divisor sums and Bessel function series. III
scientific article; zbMATH DE number 6224207

    Statements

    8 November 2013
    0 references
    circle problem
    0 references
    divisor problem
    0 references
    Bessel functions
    0 references
    Ramanujan's lost notebook
    0 references
    trigonometric series
    0 references
    Weighted divisor sums and Bessel function series. III (English)
    0 references
    0 references
    0 references
    0 references
    In previous papers the authors have proved two identities due to \textit{S. Ramanujan} [The Lost Notebook and other unpublished papers. With an introduction by George E. Andrews. Berlin: Springer-Verlag; New Delhi: Narosa Publishing House. (1988; Zbl 0639.01023)] and the methods developed to that end (cf. their paper in [Adv. Math. 229, No. 3, 2055--2097 (2012; Zbl 1236.33010)]) are now used to prove new identities between Bessel series and finite sums of products ot two trigonometric seriesNEWLINENEWLINELet NEWLINE\[NEWLINEI_{\nu}(z)=-Y_{\nu}(z)-{2\over \pi}\,K_{\nu}(z),\eqno{(\ast)}NEWLINE\]NEWLINE where \(Y_{\nu}(z)\) is the Bessel function of the second kind of order \(\nu\) and \(K_{\nu}(z)\) the modified Bessel function of order \(\nu\). The results are given in three theorems, where in the infinite double sums the product \(nm\) of the indices \(n\) and \(m\) goes to infinity (the authors state that ``it seems very difficult to prove corresponding theorems wherein the series are iterated'').NEWLINENEWLINETheorem 2.1. Let \(I_1(x)\) be defined by \((\ast)\). If \(0<\theta, \sigma<1\) and \(x>0\), then NEWLINE\[NEWLINE \begin{multlined} {\sum_{n,m\leq x}}' \cos{(2\pi n\theta)}\cos{(2\pi m\sigma)} ={1\over 4}\\ +{\sqrt{x}\over 4} \sum_{n,m\geq 0} \Bigg\{{I_1(4\pi\sqrt{(n+\theta)(m+\sigma)x})\over \sqrt{(n+\theta)(m+\sigma}} +{I_1(4\pi\sqrt{(n+1-\theta)(m+\sigma)x})\over \sqrt{(n+1-\theta)(m+\sigma}} \\ +{I_1(4\pi\sqrt{(n+\theta)(m+1-\sigma)x})\over \sqrt{(n+\theta)(m+1-\sigma}} +{I_1(4\pi\sqrt{(n+1-\theta)(m+1-\sigma)x})\over \sqrt{(n+1-\theta)(m+1-\sigma}}\Bigg\}. \end{multlined} NEWLINE\]NEWLINE Theorem 2.2. Let \(J_{\nu}(x)\) denote the ordinary Bessel function of order \(\nu\). If \(0<\theta, \sigma<1\) and \(x>0\), then NEWLINE\[NEWLINE \begin{multlined} {\sum_{n,m\leq x}}' \cos{(2\pi n\theta)}\sin{(2\pi m\sigma)} =-{\cot{(\pi\sigma)}\over 4}\\ +{\sqrt{x}\over 4} \sum_{n,m\geq 0} \Bigg\{{J_1(4\pi\sqrt{(n+\theta)(m+\sigma)x})\over \sqrt{(n+\theta)(m+\sigma}} +{J_1(4\pi\sqrt{(n+1-\theta)(m+\sigma)x})\over \sqrt{(n+1-\theta)(m+\sigma}} \\ -{J_1(4\pi\sqrt{(n+\theta)(m+1-\sigma)x})\over \sqrt{(n+\theta)(m+1-\sigma}} -{J_1(4\pi\sqrt{(n+1-\theta)(m+1-\sigma)x})\over \sqrt{(n+1-\theta)(m+1-\sigma}}\Bigg\}. \end{multlined} NEWLINE\]NEWLINE Theorem 2.3. If \(0<\theta, \sigma<1\) and \(x>0\), then NEWLINE\[NEWLINE \begin{multlined} {\sum_{n,m\leq x}}' \sin{(2\pi n\theta)}\sin{(2\pi m\sigma)} =\\ {x\sqrt{x}\over 4} \sum_{n,m\geq 0} \Bigg\{{T_{3/2}(4\pi^2\sqrt{(n+\theta)(m+\sigma)x})\over \sqrt{(n+\theta)(m+\sigma}} -{T_{3/2}(4\pi^2\sqrt{(n+1-\theta)(m+\sigma)x})\over \sqrt{(n+1-\theta)(m+\sigma}} \\ -{T_{3/2}(4\pi^2\sqrt{(n+\theta)(m+1-\sigma)x})\over \sqrt{(n+\theta)(m+1-\sigma}} +{T_{3/2}(4\pi^2\sqrt{(n+1-\theta)(m+1-\sigma)x})\over \sqrt{(n+1-\theta)(m+1-\sigma}}\Bigg\}. \end{multlined} NEWLINE\]NEWLINE Here NEWLINE\[NEWLINET_{3/2}(x)=K_{3/2}(x;{1\over 2},2).NEWLINE\]NEWLINE Reviewer's remark: In the paper an integral formula is stated for \(T_{3/2}(x)\) that gives `an uneasy feeling'.
    0 references

    Identifiers