Shift invariant spaces of multivariate anisotropic functions on the torus (Q2862339)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Shift invariant spaces of multivariate anisotropic functions on the torus |
scientific article; zbMATH DE number 6227310
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Shift invariant spaces of multivariate anisotropic functions on the torus |
scientific article; zbMATH DE number 6227310 |
Statements
15 November 2013
0 references
multivariate periodic wavelets
0 references
anisotropic periodic multiscale analysis
0 references
functions on the torus
0 references
pattern
0 references
discrete Fourier transform on the pattern
0 references
fast Fourier transform on the pattern
0 references
shift invariant subspaces
0 references
interpolation on the pattern
0 references
interpolation error
0 references
periodic Strang-Fix conditions
0 references
anisotropic periodic multiresolution analysis
0 references
de la Vallée Poussin-like scaling functions
0 references
de la Vallée Poussin-like wavelets
0 references
anisotropic periodic wavelets
0 references
monograph
0 references
algorithm
0 references
numerical example
0 references
Shift invariant spaces of multivariate anisotropic functions on the torus (English)
0 references
This well-written booklet coincides with the doctoral thesis finished 2013 at the University of Lübeck. As known, shift invariant spaces and multiscale decompositions of functions are powerful tools in signal and image processing. The author develops a framework for anisotropic periodic multiscale analysis with the help of related shift invariant spaces. Further, he presents anisotropic periodic wavelet algorithms for the decomposition and reconstruction of periodic \(d\)-variate functions on the pattern of grid points. Thus the author continues the investigation of \textit{D. Langemann} and \textit{J. Prestin} [Appl. Comput. Harmon. Anal. 28, No. 1, 46--66 (2010; Zbl 1185.42033)].NEWLINENEWLINE In this booklet, the author considers functions \(f:\, {\mathbb T}^d \to {\mathbb C}\), where \({\mathbb T}^d := {\mathbb R}^d/2\pi {\mathbb Z}^d\) is the \(d\)-dimensional torus. For a regular matrix \({\mathbf M}\in {\mathbb Z}^{d\times d}\), the lattice \(\Lambda({\mathbf M}) := {\mathbf M}^{-1}\,{\mathbb Z}^d\) is 1-periodic and the pattern \({\mathcal P}({\mathbf M})\) is defined by \(\Lambda({\mathbf M}) \cap [0,\,1)^d\). A discrete Fourier transform on the pattern \({\mathcal P}({\mathbf M})\) is introduced together with a corresponding fast algorithm. For details see also author's paper [Appl. Comput. Harmon. Anal. 35, No. 1, 39--51 (2013)].NEWLINENEWLINE A linear subspace \(V \subset L^2({\mathbb T}^d)\) is called \({\mathbf M}\)-shift invariant, if \(f\in V\) implies \(f(\cdot - 2\pi x) \in V\) for all \(x\in {\mathcal P}({\mathbf M})\). The properties of \({\mathbf M}\)-shift invariant subspaces are analyzed. Using \({\mathbf M}\)-shift invariant subspaces and discrete Fourier transforms on the pattern \({\mathcal P}{\mathbf M}\), the interpolation problem on \({\mathcal P}{\mathbf M}\) is discussed. Applying periodic Strang-Fix conditions, the interpolation error is estimated with respect to an anisotropic Sobolev norm.NEWLINENEWLINE The anisotropic periodic multiresolution analysis is defined by a nested sequence of \({\mathbf M}_j\)-shift invariant subspaces \(V_j \subset L^2({\mathbb T}^d)\) \((j=0,1,\dots)\), where \({\mathbf M_j} = {\mathbf J}_j {\mathbf M}_{j-1}\) with regular matrices \({\mathbf J}_j\in {\mathbb Z}^{d\times d}\) and the unit matrix \({\mathbf M}_0\). Using fast Fourier transforms on the pattern \({\mathcal P}({\mathbf M}_j)\), fast decomposition and reconstruction algorithms for \(d\)-variate anisotropic periodic wavelets are presented. Finally, the author introduces well-localized de la Vallée Poussin-like scaling functions and related wavelets. Numerical examples are given for \(d=2\).
0 references