On metrizable remainders of locally compact separable metrizable spaces (Q2862664)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On metrizable remainders of locally compact separable metrizable spaces |
scientific article; zbMATH DE number 6228411
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On metrizable remainders of locally compact separable metrizable spaces |
scientific article; zbMATH DE number 6228411 |
Statements
18 November 2013
0 references
locally compact
0 references
separable
0 references
metric
0 references
compactifications
0 references
remainders
0 references
continuous image
0 references
perfect image
0 references
On metrizable remainders of locally compact separable metrizable spaces (English)
0 references
Let \(\mathcal C\) denote the class of all compact metrizable non-empty spaces, \(\mathcal M\) the class of all locally compact, non-compact separate metric spaces, and \(\mathcal M_C\) the class of \(X\in \mathcal M\) such that \(X\) is connected. If \(Y\) is a compact Hausdorff space such that \(X\) is dense in \(Y,\) then \(Y\setminus X\) is called the remainder of \(X\) in \(Y\). For \(X\in \mathcal M\), let \(\mathcal R(X)\) denote the class of all metrizable remainders of \(X\). A result of \textit{K. D. Magill jun.} [Trans. Am. Math. Soc. 160, 411--417 (1971; Zbl 0224.54029)], shows that for all \(X\in\mathcal M\) a compactification \(Y\) of \(X\) is metrizable if and only if the remainder \(Y\setminus X\) is metrizable. The authors prove two main results: (1) A characterization of those \(X\in\mathcal M\) such that \(\mathcal R(X)=\mathcal C\), and (2) the theorem that for any two \(X,X^\prime\in \mathcal M_C\), either \(R(X)\subset \mathcal R(X^\prime)\) or \(R(X^\prime)\subset \mathcal R(X)\).
0 references