On metrizable remainders of locally compact separable metrizable spaces (Q2862664)

From MaRDI portal





scientific article; zbMATH DE number 6228411
Language Label Description Also known as
English
On metrizable remainders of locally compact separable metrizable spaces
scientific article; zbMATH DE number 6228411

    Statements

    0 references
    0 references
    18 November 2013
    0 references
    locally compact
    0 references
    separable
    0 references
    metric
    0 references
    compactifications
    0 references
    remainders
    0 references
    continuous image
    0 references
    perfect image
    0 references
    On metrizable remainders of locally compact separable metrizable spaces (English)
    0 references
    Let \(\mathcal C\) denote the class of all compact metrizable non-empty spaces, \(\mathcal M\) the class of all locally compact, non-compact separate metric spaces, and \(\mathcal M_C\) the class of \(X\in \mathcal M\) such that \(X\) is connected. If \(Y\) is a compact Hausdorff space such that \(X\) is dense in \(Y,\) then \(Y\setminus X\) is called the remainder of \(X\) in \(Y\). For \(X\in \mathcal M\), let \(\mathcal R(X)\) denote the class of all metrizable remainders of \(X\). A result of \textit{K. D. Magill jun.} [Trans. Am. Math. Soc. 160, 411--417 (1971; Zbl 0224.54029)], shows that for all \(X\in\mathcal M\) a compactification \(Y\) of \(X\) is metrizable if and only if the remainder \(Y\setminus X\) is metrizable. The authors prove two main results: (1) A characterization of those \(X\in\mathcal M\) such that \(\mathcal R(X)=\mathcal C\), and (2) the theorem that for any two \(X,X^\prime\in \mathcal M_C\), either \(R(X)\subset \mathcal R(X^\prime)\) or \(R(X^\prime)\subset \mathcal R(X)\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references