First order multivalued problems on time scales (Q2863564)

From MaRDI portal





scientific article; zbMATH DE number 6232020
Language Label Description Also known as
English
First order multivalued problems on time scales
scientific article; zbMATH DE number 6232020

    Statements

    0 references
    0 references
    22 November 2013
    0 references
    dynamic inclusion
    0 references
    solution tube
    0 references
    Henstock integral
    0 references
    First order multivalued problems on time scales (English)
    0 references
    The authors prove the existence of a solution for the first order periodic dynamic inclusion on time scales NEWLINE\[NEWLINEx^\Delta(t) \in F(t,x(t)), \; \Delta -\text{a. e. } t \in [0,1] \cap\mathbb T, \quad x(0)=x(1).NEWLINE\]NEWLINENEWLINENEWLINEHere, \(\mathbb T\) is a time scale and, denoting by \(P_{kc}(\mathbb R^n)\) the family of nonempty, compact and convex subsets of \(\mathbb R^n\), \(F:[0,1] \cap\mathbb T \times\mathbb R^n \to P_{kc}(\mathbb R^n)\), is a Carathéodory multifunction such that for every \(\mathbb R>0\), there exists a Henstock-\(\Delta\)-integrable multifunction \(G_\mathbb R:[0,1] \cap\mathbb T\times\mathbb R^n \to P_{kc}(\mathbb R^n)\) such that \(F(t,x) \subset G_r(t)\) for all \(t \in [0,1] \cap\mathbb T\), and \(x \in\mathbb R^n\) such that \(\|x\| \leq\mathbb R\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references