First order multivalued problems on time scales (Q2863564)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: First order multivalued problems on time scales |
scientific article; zbMATH DE number 6232020
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | First order multivalued problems on time scales |
scientific article; zbMATH DE number 6232020 |
Statements
22 November 2013
0 references
dynamic inclusion
0 references
solution tube
0 references
Henstock integral
0 references
First order multivalued problems on time scales (English)
0 references
The authors prove the existence of a solution for the first order periodic dynamic inclusion on time scales NEWLINE\[NEWLINEx^\Delta(t) \in F(t,x(t)), \; \Delta -\text{a. e. } t \in [0,1] \cap\mathbb T, \quad x(0)=x(1).NEWLINE\]NEWLINENEWLINENEWLINEHere, \(\mathbb T\) is a time scale and, denoting by \(P_{kc}(\mathbb R^n)\) the family of nonempty, compact and convex subsets of \(\mathbb R^n\), \(F:[0,1] \cap\mathbb T \times\mathbb R^n \to P_{kc}(\mathbb R^n)\), is a Carathéodory multifunction such that for every \(\mathbb R>0\), there exists a Henstock-\(\Delta\)-integrable multifunction \(G_\mathbb R:[0,1] \cap\mathbb T\times\mathbb R^n \to P_{kc}(\mathbb R^n)\) such that \(F(t,x) \subset G_r(t)\) for all \(t \in [0,1] \cap\mathbb T\), and \(x \in\mathbb R^n\) such that \(\|x\| \leq\mathbb R\).
0 references