Variational properties of value functions (Q2866203)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Variational properties of value functions |
scientific article; zbMATH DE number 6238056
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Variational properties of value functions |
scientific article; zbMATH DE number 6238056 |
Statements
13 December 2013
0 references
convex optimization
0 references
optimal value functions
0 references
Lagrange multipliers
0 references
inverse problems
0 references
numerical examples
0 references
0.9032841
0 references
0 references
0.89138275
0 references
0.89138275
0 references
0.8787507
0 references
0.8767725
0 references
0.8764186
0 references
Variational properties of value functions (English)
0 references
The authors consider the family of feasible convex optimization problems NEWLINE\[NEWLINEP(b,\tau):\quad\underset{r,x}{}{\text{minimize}}\,\rho\quad\text{subject to}\quad Ax+r= b,\quad\phi(x)\leq\tau,NEWLINE\]NEWLINE where \(b\in\mathbb{R}^m\), \(A\in\mathbb{R}^{m\times n}\), and the functions \(\phi:\mathbb{R}^n\to\overline{\mathbb{R}}:= (-\infty,\infty)\) and \(\rho: \mathbb{R}^m\to\overline{\mathbb{R}}\) are closed, proper, and convex and continuous relative to their domains and the value function NEWLINE\[NEWLINEv(b,r):= \underset{r,x}{}{\text{inf}}\,\{\rho\mid Ax+ r= b,\, \phi(x)\leq\tau\}NEWLINE\]NEWLINE gives the optimal objective value of problem \(P(b,\tau)\) for fixed parameters \(b\) and \(\tau\).NEWLINENEWLINE The authors characterize the variational properties of the value functions for a broad class of convex formulations, which are not all covered by standard Lagrange multiplier theory. An inverse function theorem is given that links the value functions of different regularization. -- Numerical examples illustrate the theoretical results.
0 references