Representation numbers of two octonary quadratic forms (Q2866991)

From MaRDI portal





scientific article; zbMATH DE number 6236967
Language Label Description Also known as
English
Representation numbers of two octonary quadratic forms
scientific article; zbMATH DE number 6236967

    Statements

    0 references
    10 December 2013
    0 references
    quadratic forms
    0 references
    sum of divisors functions
    0 references
    convolution sums
    0 references
    representation numbers
    0 references
    Representation numbers of two octonary quadratic forms (English)
    0 references
    Let \(N(a_1,\ldots,a_4;n)\) denote the number of representations of an integer \(n\) by the form NEWLINE\[NEWLINEa_1(x_1^2 + x_1x_2 + x_2^2) + a_2(x_3^2+ x_3x_4 + x_4^2) + a_3(x_5^2 + x_5x_6 + x_6^2) + a_4(x_7^2 + x_7x_8 + x_8^2).NEWLINE\]NEWLINE In this paper the author derives formulae for \(N(1,1,1,2;n)\) and \(N(1,2,2,2;n)\) by using the method of Alaca, Alaca and Williams. These formulae are given in terms of \(\sigma_{3}(n)\). In the calculations he used the PARI software. The main theorem is as follows:NEWLINENEWLINETheorem. Let \(n\in\mathbb N\). Set \(n=2^a3^bN\), where \(a,b\in\mathbb N_0\), \(N\in\mathbb N\), \(\gcd(N,6)=1\) and \(N=\prod_{p\mid N}p^{a_p}\). Then NEWLINE\[NEWLINEN(1,1,1,2;n)=\frac 6{91}(2^{3a+4}+5)(3^{3b+2}+4)\prod_{p\mid N}\frac{p^{3a_p+3}-1}{p^3-1},\tag{1}NEWLINE\]NEWLINE NEWLINE\[NEWLINEN(1,2,2,2;n)=\frac 6{91}(2^{3a+1}+5)(3^{3b+2}+4)\prod_{p\mid N}\frac{p^{3^{a_p}+3}-1}{p^3-1}.\tag{2}NEWLINE\]NEWLINE NEWLINENEWLINEThe needed evaluations of certain convolution sums are given in Section 3, and after the proof of the theorem in Section 4, the final section eight other octonary quadratic forms to which the method of this paper applies are listed.
    0 references

    Identifiers