A Hochstadt-Lieberman theorem for integro-differential operator (Q2867739)

From MaRDI portal





scientific article; zbMATH DE number 6241508
Language Label Description Also known as
English
A Hochstadt-Lieberman theorem for integro-differential operator
scientific article; zbMATH DE number 6241508

    Statements

    0 references
    0 references
    20 December 2013
    0 references
    half inverse problem
    0 references
    Sturm-Liouville operator
    0 references
    integro-differential operator
    0 references
    A Hochstadt-Lieberman theorem for integro-differential operator (English)
    0 references
    The authors consider a boundary value problem \(L=L(q,M)\) of the form NEWLINE\[NEWLINE -y''+q(x)y+\int_0^x M(x-t)y(t)\,dt=\lambda y, \quad x\in(0,\pi), \quad y(0)=y(\pi)=0, NEWLINE\]NEWLINE where \(q,\; M\) are real-valued functions and \(q\in L_2(0,\pi),\) \(M\in L(0,\pi).\) They study uniqueness of recovering the function \(q(x)\) on \((0,\pi/2)\) from the spectrum of \(L,\) provided that \(q\) on \((\pi/2,\pi)\) and \(M\) on \((0,\pi)\) are known a priori.
    0 references

    Identifiers