Global existence for a strongly coupled Cahn-Hilliard system with viscosity (Q2869747)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global existence for a strongly coupled Cahn-Hilliard system with viscosity |
scientific article; zbMATH DE number 6242943
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global existence for a strongly coupled Cahn-Hilliard system with viscosity |
scientific article; zbMATH DE number 6242943 |
Statements
3 January 2014
0 references
existence
0 references
Cahn-Hilliard
0 references
viscosity
0 references
Neumann boundary condition
0 references
math.AP
0 references
Global existence for a strongly coupled Cahn-Hilliard system with viscosity (English)
0 references
An existence result is proved for a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by Neumann homogeneous boundary conditions and initial conditions, NEWLINE\[NEWLINE (1+2g(\rho))\partial_t\mu+\mu g\prime (\rho)\partial_t \rho-\text{ div} (k(\mu,\rho)\nabla \mu)=0, NEWLINE\]NEWLINE NEWLINE\[NEWLINE \partial_t \rho-\Delta\rho+f\prime(\rho)=\mu g\prime (\rho), NEWLINE\]NEWLINE NEWLINE\[NEWLINE (k(\mu,\rho)\nabla\mu)\cdot\nu|_{\Gamma}=0,\qquad\text{and}\qquad \partial_\nu\rho|_\Gamma=0, NEWLINE\]NEWLINE NEWLINE\[NEWLINE \mu(0)=\mu_0 ,\qquad\text{and}\qquad \rho(0)=\rho_0. NEWLINE\]
0 references