Extreme preservers of term rank inequalities over nonbinary Boolean semiring (Q2870478)

From MaRDI portal





scientific article; zbMATH DE number 6248009
Language Label Description Also known as
English
Extreme preservers of term rank inequalities over nonbinary Boolean semiring
scientific article; zbMATH DE number 6248009

    Statements

    0 references
    0 references
    0 references
    21 January 2014
    0 references
    linear preserver
    0 references
    term rank
    0 references
    term rank inequality
    0 references
    nonbinary Boolean semiring
    0 references
    Extreme preservers of term rank inequalities over nonbinary Boolean semiring (English)
    0 references
    Let \(M_{n}(\mathbb{S}_{k})\) and \(M_{m,n}(\mathbb{S}_{k})\) denote sets of all \(n\times n\) and \(m\times n\) matrices, respectively, with entries from a Boolean semiring \(\mathbb{S}_{k}\). Throughout the paper, the authors assume that \(m\leq n\) and \(\mathbb{S}_{k}\) is not a binary (i.e. zero-one) Boolean semiring. The matrix \(A\in M_{m,n}(\mathbb{S}_{k})\) is said to be of term rank \(k\) \((t(A)=k)\) if the least number of lines (rows or columns) needed to include all nonzero elements of \(A\) is equal to \(k\). The least number of columns and the least number of rows needed to include all nonzero elements of \(A\) are denoted by \(c(A)\) and \(r(A)\), respectively.NEWLINENEWLINEFor \(A,B\in M_{m,n}(\mathbb{S}_{k})\) we have \(t(A+B)\geq \max \{t(A),t(B)\}\), and the following set of matrices arises as the extremal case of this inequality:NEWLINENEWLINE\(\mathcal{T}_{sm}(\mathbb{S}_{k})=\{(X,Y)\in M_{m,n}(\mathbb{S}_{k})^{2}:t(X+Y)=\max \{t(X),t(Y)\}\}\).\newline From similar term rank inequalities the following sets arise: NEWLINE\[NEWLINE\mathcal{T}_{sa}(\mathbb{S}_{k})=\{(X,Y)\in M_{m,n}(\mathbb{S}_{k})^{2}:t(X+Y)=t(X)+t(Y)\},NEWLINE\]NEWLINE NEWLINE\[NEWLINE\mathcal{T}_{mn}(\mathbb{S}_{k})=\{(X,Y)\in M_{n}(\mathbb{S}_{k})^{2}:t(XY)=\min \{r(X),c(Y)\}\},NEWLINE\]NEWLINE NEWLINE\[NEWLINE\mathcal{T}_{ma}(\mathbb{S}_{k})=\{(X,Y)\in M_{n}(\mathbb{S}_{k})^{2}:t(XY)=t(X)+t(Y)-n\},NEWLINE\]NEWLINE NEWLINE\[NEWLINE\mathcal{T}_{mt}(\mathbb{S}_{k})=\{(X,Y,Z)\in M_{n}(\mathbb{S}_{k})^{3}:t(XYZ)+t(Y)=t(XY)+t(YZ)\}.NEWLINE\]NEWLINE We say that a map \(\phi \) preserves a set \(\mathcal{P}\) if \(X\in \mathcal{P}\) implies \(\phi (X)\in \mathcal{P}\), or if \(\mathcal{P}\) is a set of ordered pairs (triples) provided that \((X,Y)\in \mathcal{P}\) \(((X,Y,Z)\in \mathcal{P}\)) implies \((\phi (X),\phi (Y))\in \mathcal{P}\) (\((\phi (X),\phi (Y),\phi(Z))\in \mathcal{P}\)). In the paper, the authors characterize surjective linear maps NEWLINE\[NEWLINE \phi :M_{m,n}(\mathbb{S}_{k})\rightarrow M_{m,n}(\mathbb{S}_{k}) NEWLINE\]NEWLINE which preserve \(\mathcal{T}_{sm}(\mathbb{S}_{k})\) or \(\mathcal{T}_{sa}(\mathbb{S}_{k})\). They also characterize surjective linear maps NEWLINE\[NEWLINE \phi :M_{n}(\mathbb{S}_{k})\rightarrow M_{n}(\mathbb{S}_{k}) NEWLINE\]NEWLINE which preserve \(\mathcal{T}_{mn}(\mathbb{S}_{k})\), or \(\mathcal{T}_{ma}(\mathbb{S}_{k})\), or \(\mathcal{T}_{mt}(\mathbb{S}_{k})\).NEWLINENEWLINEThe paper has three sections. In the second section, the authors introduce notations and present some basic and preliminary results. Main results (six theorems) are presented and proved in the third section.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references