Extreme preservers of term rank inequalities over nonbinary Boolean semiring (Q2870478)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Extreme preservers of term rank inequalities over nonbinary Boolean semiring |
scientific article; zbMATH DE number 6248009
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Extreme preservers of term rank inequalities over nonbinary Boolean semiring |
scientific article; zbMATH DE number 6248009 |
Statements
21 January 2014
0 references
linear preserver
0 references
term rank
0 references
term rank inequality
0 references
nonbinary Boolean semiring
0 references
Extreme preservers of term rank inequalities over nonbinary Boolean semiring (English)
0 references
Let \(M_{n}(\mathbb{S}_{k})\) and \(M_{m,n}(\mathbb{S}_{k})\) denote sets of all \(n\times n\) and \(m\times n\) matrices, respectively, with entries from a Boolean semiring \(\mathbb{S}_{k}\). Throughout the paper, the authors assume that \(m\leq n\) and \(\mathbb{S}_{k}\) is not a binary (i.e. zero-one) Boolean semiring. The matrix \(A\in M_{m,n}(\mathbb{S}_{k})\) is said to be of term rank \(k\) \((t(A)=k)\) if the least number of lines (rows or columns) needed to include all nonzero elements of \(A\) is equal to \(k\). The least number of columns and the least number of rows needed to include all nonzero elements of \(A\) are denoted by \(c(A)\) and \(r(A)\), respectively.NEWLINENEWLINEFor \(A,B\in M_{m,n}(\mathbb{S}_{k})\) we have \(t(A+B)\geq \max \{t(A),t(B)\}\), and the following set of matrices arises as the extremal case of this inequality:NEWLINENEWLINE\(\mathcal{T}_{sm}(\mathbb{S}_{k})=\{(X,Y)\in M_{m,n}(\mathbb{S}_{k})^{2}:t(X+Y)=\max \{t(X),t(Y)\}\}\).\newline From similar term rank inequalities the following sets arise: NEWLINE\[NEWLINE\mathcal{T}_{sa}(\mathbb{S}_{k})=\{(X,Y)\in M_{m,n}(\mathbb{S}_{k})^{2}:t(X+Y)=t(X)+t(Y)\},NEWLINE\]NEWLINE NEWLINE\[NEWLINE\mathcal{T}_{mn}(\mathbb{S}_{k})=\{(X,Y)\in M_{n}(\mathbb{S}_{k})^{2}:t(XY)=\min \{r(X),c(Y)\}\},NEWLINE\]NEWLINE NEWLINE\[NEWLINE\mathcal{T}_{ma}(\mathbb{S}_{k})=\{(X,Y)\in M_{n}(\mathbb{S}_{k})^{2}:t(XY)=t(X)+t(Y)-n\},NEWLINE\]NEWLINE NEWLINE\[NEWLINE\mathcal{T}_{mt}(\mathbb{S}_{k})=\{(X,Y,Z)\in M_{n}(\mathbb{S}_{k})^{3}:t(XYZ)+t(Y)=t(XY)+t(YZ)\}.NEWLINE\]NEWLINE We say that a map \(\phi \) preserves a set \(\mathcal{P}\) if \(X\in \mathcal{P}\) implies \(\phi (X)\in \mathcal{P}\), or if \(\mathcal{P}\) is a set of ordered pairs (triples) provided that \((X,Y)\in \mathcal{P}\) \(((X,Y,Z)\in \mathcal{P}\)) implies \((\phi (X),\phi (Y))\in \mathcal{P}\) (\((\phi (X),\phi (Y),\phi(Z))\in \mathcal{P}\)). In the paper, the authors characterize surjective linear maps NEWLINE\[NEWLINE \phi :M_{m,n}(\mathbb{S}_{k})\rightarrow M_{m,n}(\mathbb{S}_{k}) NEWLINE\]NEWLINE which preserve \(\mathcal{T}_{sm}(\mathbb{S}_{k})\) or \(\mathcal{T}_{sa}(\mathbb{S}_{k})\). They also characterize surjective linear maps NEWLINE\[NEWLINE \phi :M_{n}(\mathbb{S}_{k})\rightarrow M_{n}(\mathbb{S}_{k}) NEWLINE\]NEWLINE which preserve \(\mathcal{T}_{mn}(\mathbb{S}_{k})\), or \(\mathcal{T}_{ma}(\mathbb{S}_{k})\), or \(\mathcal{T}_{mt}(\mathbb{S}_{k})\).NEWLINENEWLINEThe paper has three sections. In the second section, the authors introduce notations and present some basic and preliminary results. Main results (six theorems) are presented and proved in the third section.
0 references