Normalized iterative hard thresholding for matrix completion (Q2870672)

From MaRDI portal





scientific article; zbMATH DE number 6248317
Language Label Description Also known as
English
Normalized iterative hard thresholding for matrix completion
scientific article; zbMATH DE number 6248317

    Statements

    0 references
    0 references
    21 January 2014
    0 references
    matrix completion
    0 references
    compressed sensing
    0 references
    low rank approximation
    0 references
    alternating projection
    0 references
    algorithm
    0 references
    0 references
    0 references
    0 references
    0 references
    Normalized iterative hard thresholding for matrix completion (English)
    0 references
    Matrices of low rank can be uniquely determined from fewer linear measurements, or entries, than the total number of entries in the matrix. The authors propose an alternating projection algorithm which uses an adaptive step size calculated to be exact for a restricted subspace. The proposed method has near-optimal order recovery guarantees from dense measurement masks and average case performance superior in some respects to other matrix completion algorithms for dense measurement masks and entry measurements. The proposed algorithm is able to recover matrices from extremely close to the minimum number of measurements necessary.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references