Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian (Q2871267)

From MaRDI portal





scientific article; zbMATH DE number 6249046
Language Label Description Also known as
English
Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian
scientific article; zbMATH DE number 6249046

    Statements

    0 references
    0 references
    0 references
    22 January 2014
    0 references
    nonlinear problems
    0 references
    fractional Laplacian
    0 references
    fractional Sobolev spaces
    0 references
    critical Sobolev exponent
    0 references
    spherical solutions
    0 references
    ground states
    0 references
    math.AP
    0 references
    Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian (English)
    0 references
    In this paper, the authors establish the existence of a radially symmetric solution \(u \in H^s(\mathbb R^N)\) of NEWLINE\[NEWLINE (- \Delta)^s u + u = |u|^{p-1}u NEWLINE\]NEWLINE where \(s\in (0,1)\), \((- \Delta)^s\) is a fractional Laplacian, \(N>2s\) and \(p\in (1, (N+2s)/(N-2s)\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references