Pointwise multipliers on martingale Campanato spaces (Q2872220)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pointwise multipliers on martingale Campanato spaces |
scientific article; zbMATH DE number 6245256
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pointwise multipliers on martingale Campanato spaces |
scientific article; zbMATH DE number 6245256 |
Statements
Pointwise multipliers on martingale Campanato spaces (English)
0 references
14 January 2014
0 references
Campanato space
0 references
pointwise multiplier
0 references
martigale space
0 references
regular filtration
0 references
Let \(\mathcal{L}_{p,\phi}\) be the martingale Campanato space on a regular (i.e., in a sense: doubling) atomic filtration of a probability space \(\Omega\). If \(\phi\) is doubling and satisfies another technical hypothesis, the space of pointwise multipliers on \(\mathcal{L}_{p,\phi}\) is characterized as \(\mathcal{L}_{p,\tilde\phi}\cap L_\infty\) for a certain explicit \(\tilde\phi\). The computations rely on a ``reverse doubling'' type dichotomy established by the authors in [J. Funct. Spaces Appl. 2012, Article ID 673929, 29 p. (2012; Zbl 1254.46035)]: for nested atoms \(A_i\in\mathcal{F}_i\) \((i=n-1,n)\), it holds that either \(P(A_n)=P(A_{n-1})\) or \((1+1/R)P(A_n)\leq P(A_{n-1})\leq R\cdot P(A_n)\).
0 references