Growth of logarithmic derivative of meromorphic functions (Q2873582)

From MaRDI portal





scientific article; zbMATH DE number 6250126
Language Label Description Also known as
English
Growth of logarithmic derivative of meromorphic functions
scientific article; zbMATH DE number 6250126

    Statements

    24 January 2014
    0 references
    Nevanlinna theory
    0 references
    logarithmic derivative
    0 references
    meromorphic function
    0 references
    linear differential equation
    0 references
    oscillation of solutions
    0 references
    Growth of logarithmic derivative of meromorphic functions (English)
    0 references
    We use the standard notation of value distribution theory. Let NEWLINE\[NEWLINE\rho_p(f)=\limsup _{r\to \infty} \frac{\log _{p} T(r,f)}{\log r},\quad p \in {\mathbb N}, NEWLINE\]NEWLINE where \(\log_p\) denotes the \(p\)th iteration of the logarithm, be the iterated order of a meromorphic function \(f\).NEWLINENEWLINEUsing methods of Nevanlinna theory the authors prove some new results on the growth of the logarithmic derivative.NEWLINENEWLINETheorem 1.1. Suppose that \(k\geq 2\) is an integer, and let \(f\) be a meromorphic function. Then NEWLINE\[NEWLINE \rho_1\Bigl(\frac{f'}{f}\Bigr)=\max\Bigl\{ \rho_1\Bigl(\frac{f^{(k)}}{f}\Bigr) : k\geq 2\Bigr\} .NEWLINE\]NEWLINENEWLINENEWLINENEWLINE Theorem 1.2. Let \(f\) be an entire function with a finite number of zeros. Then for any integer \(k\geq 1\) NEWLINE\[NEWLINE \rho_1\Bigl (\frac{f^{(k)}}{f}\Bigr)= \rho_2(f) .NEWLINE\]NEWLINENEWLINENEWLINEThese theorems are applied to the investigation of linear differential equations.
    0 references

    Identifiers