The \(A_p-A_ {\infty}\) inequality for general Calderón-Zygmund operators (Q2874069)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Ap-Ainfty inequality for general Calderon-Zygmund operators |
scientific article; zbMATH DE number 6251193
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The \(A_p-A_ {\infty}\) inequality for general Calderón-Zygmund operators |
scientific article; zbMATH DE number 6251193 |
Statements
28 January 2014
0 references
Calderón-Zygmund operators
0 references
weights
0 references
maximal operator
0 references
The \(A_p-A_ {\infty}\) inequality for general Calderón-Zygmund operators (English)
0 references
In the paper under review, the authors obtain the following bound NEWLINE\[NEWLINE \| T_\natural f\|_{L^p(w)}\leq C_{T,p} [w]_{A_p}^{1/p} \left( [w]_{A_\infty}^{1/p^\prime} + [w^{1-p^\prime}]_{A_\infty}^{1/p} \right) \|f\|_{L^p(w)},\;(1<p<\infty, w \in A_p) NEWLINE\]NEWLINEwhere \(T\) is an arbitrary \(L^2\)-bounded Calderón-Zygmund operator and \(T_\natural\) stands for the maximal truncated operator of \(T\) given by NEWLINE\[NEWLINET_\natural f (x) = \sup_{0<\varepsilon<\nu}|\int_{\varepsilon <|y|<\nu} K(x,y) f(y) dy|.NEWLINE\]NEWLINE The result improves previously known bounds obtained by the authors.
0 references