The \(A_p-A_ {\infty}\) inequality for general Calderón-Zygmund operators (Q2874069)

From MaRDI portal





scientific article; zbMATH DE number 6251193
Language Label Description Also known as
English
The \(A_p-A_ {\infty}\) inequality for general Calderón-Zygmund operators
scientific article; zbMATH DE number 6251193

    Statements

    0 references
    0 references
    28 January 2014
    0 references
    Calderón-Zygmund operators
    0 references
    weights
    0 references
    maximal operator
    0 references
    The \(A_p-A_ {\infty}\) inequality for general Calderón-Zygmund operators (English)
    0 references
    In the paper under review, the authors obtain the following bound NEWLINE\[NEWLINE \| T_\natural f\|_{L^p(w)}\leq C_{T,p} [w]_{A_p}^{1/p} \left( [w]_{A_\infty}^{1/p^\prime} + [w^{1-p^\prime}]_{A_\infty}^{1/p} \right) \|f\|_{L^p(w)},\;(1<p<\infty, w \in A_p) NEWLINE\]NEWLINEwhere \(T\) is an arbitrary \(L^2\)-bounded Calderón-Zygmund operator and \(T_\natural\) stands for the maximal truncated operator of \(T\) given by NEWLINE\[NEWLINET_\natural f (x) = \sup_{0<\varepsilon<\nu}|\int_{\varepsilon <|y|<\nu} K(x,y) f(y) dy|.NEWLINE\]NEWLINE The result improves previously known bounds obtained by the authors.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references