Studies on anti-periodic boundary value problems for two classes of special second order impulsive differential equations (Q2874191)

From MaRDI portal





scientific article; zbMATH DE number 6251516
Language Label Description Also known as
English
Studies on anti-periodic boundary value problems for two classes of special second order impulsive differential equations
scientific article; zbMATH DE number 6251516

    Statements

    Studies on anti-periodic boundary value problems for two classes of special second order impulsive differential equations (English)
    0 references
    0 references
    0 references
    29 January 2014
    0 references
    anti-periodic boundary value problem
    0 references
    lower (upper) solution
    0 references
    monotone iterative technique
    0 references
    impulsive differential inequality
    0 references
    0 references
    0 references
    0 references
    In this paper, the authors consider two anti-periodic boundary value problems NEWLINE\[NEWLINE\begin{cases} x''(t)=f(t,x(t)),\;t\in[0,T],\;t\neq t_1,\dots,t_p, \\ \Delta x(t_k)=l_k(x(t_k)), \;\Delta x'(t_k)=l_k^*(x'(t_k)),\;k=1,2,\dots,p, \\ x(0)=-x(T),\;x'(0)=-x'(T),\end{cases} \tag{1}NEWLINE\]NEWLINE and NEWLINE\[NEWLINE\begin{cases} x''(t)=f(t,x'(t)),\;t\in[0,T],\;t\neq t_1,\dots,t_p,\\ \Delta x(t_k)=l_k(x(t_k)),\;\Delta x'(t_k)=l_k^*(x'(t_k)),\;k=1,2,\dots,p,\\ x(0)=-x(T),\;x'(0)=-x'(T),\end{cases} \tag{2}NEWLINE\]NEWLINE where \(l_{k},l_{k}^*\in C(\mathbb R,\mathbb R)\), \(0=t_0<t_1<\dots<t_p<t_{p+1}=1\), \(\Delta x(t_k)=x(t_k^+)-x(t_k)\), \(\Delta x'(t_{k})=x'(t_k^+)-x'(t_k)\) and \(f:[0,T]\times\mathbb R\to\mathbb R\) is a Carathéodory function. Using impulsive differential inequalities and monotone iterative technique coupled with lower and upper solutions, the authors obtain the existence of solutions of (1) and (2). Moreover, they give two examples.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references