Analogues of Ramanujan's 24 squares formula (Q2876595)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Analogues of Ramanujan's 24 squares formula |
scientific article; zbMATH DE number 6331995
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Analogues of Ramanujan's 24 squares formula |
scientific article; zbMATH DE number 6331995 |
Statements
Analogues of Ramanujan's 24 squares formula (English)
0 references
19 August 2014
0 references
sums of 24 squares
0 references
modular forms
0 references
sums of squares and triangular numbers
0 references
Eisenstein series
0 references
Dedekind eta function
0 references
The authors determine a class of formulae analogous to the Ramanujan formula for the number of representations of a positive integer as a sum of 24 squares. For example the number of representations of \(n-1\) as a sum of 16 squares and 8 triangular number is NEWLINE\[NEWLINE{1\over 691} \sigma_{11}(n)- {1\over 691} \sigma_{11}\Biggl({n\over 2}\Biggr)+ {690\over 691}\tau(n)+ {42152\over 691} \tau\Biggl({n\over 2}\Biggr)+8192\,\tau\Biggl({n\over 2}\Biggr)+ 25\,\omega(n),NEWLINE\]NEWLINE where \(\tau\) is the Ramanujan tau-function and where \(\omega(n)\) is defined through NEWLINE\[NEWLINEq^3 \prod^\infty_{n=1} (1- q^n)^8(1- q^{4n})^{16}= \sum^\infty_{n=1} \omega(n)\,q^n.NEWLINE\]
0 references