Analogues of Ramanujan's 24 squares formula (Q2876595)

From MaRDI portal





scientific article; zbMATH DE number 6331995
Language Label Description Also known as
English
Analogues of Ramanujan's 24 squares formula
scientific article; zbMATH DE number 6331995

    Statements

    Analogues of Ramanujan's 24 squares formula (English)
    0 references
    0 references
    0 references
    19 August 2014
    0 references
    sums of 24 squares
    0 references
    modular forms
    0 references
    sums of squares and triangular numbers
    0 references
    Eisenstein series
    0 references
    Dedekind eta function
    0 references
    The authors determine a class of formulae analogous to the Ramanujan formula for the number of representations of a positive integer as a sum of 24 squares. For example the number of representations of \(n-1\) as a sum of 16 squares and 8 triangular number is NEWLINE\[NEWLINE{1\over 691} \sigma_{11}(n)- {1\over 691} \sigma_{11}\Biggl({n\over 2}\Biggr)+ {690\over 691}\tau(n)+ {42152\over 691} \tau\Biggl({n\over 2}\Biggr)+8192\,\tau\Biggl({n\over 2}\Biggr)+ 25\,\omega(n),NEWLINE\]NEWLINE where \(\tau\) is the Ramanujan tau-function and where \(\omega(n)\) is defined through NEWLINE\[NEWLINEq^3 \prod^\infty_{n=1} (1- q^n)^8(1- q^{4n})^{16}= \sum^\infty_{n=1} \omega(n)\,q^n.NEWLINE\]
    0 references

    Identifiers