On Kondratiev spaces of test functions in the non-Gaussian infinite-dimensional analysis (Q2877320)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On Kondratiev spaces of test functions in the non-Gaussian infinite-dimensional analysis |
scientific article; zbMATH DE number 6333559
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On Kondratiev spaces of test functions in the non-Gaussian infinite-dimensional analysis |
scientific article; zbMATH DE number 6333559 |
Statements
21 August 2014
0 references
non-Gaussian infinite-dimensional analysis
0 references
Kondratiev spaces
0 references
0.90333396
0 references
0.9015038
0 references
0 references
0.8644398
0 references
0.86420226
0 references
On Kondratiev spaces of test functions in the non-Gaussian infinite-dimensional analysis (English)
0 references
The paper extends the approach to constructing Kondratiev spaces of test functions on a metric space \(Q\) developed (in the greatest generality) by \textit{Yu.\,M.\thinspace Berezans'kyi} and \textit{V.\,A.\thinspace Tesko} [Ukr.\ Mat.\ Zh.\ 55, No.\,12, 1587--1657 (2003), translated in Ukr.\ Math.\ J.\ 55, No.\,12, 1907--1979 (2003; Zbl 1080.46027)]. This approach uses the orthogonal basis given by a generating function \(Q\times H\ni (x,\lambda)\mapsto h(x,\lambda )\in \mathbb C\), where \(H\) is a complex Hilbert space, \(h\) satisfies certain assumptions (in particular, \(h(\cdot ,\lambda )\) is continuous, \(h(x,\cdot )\) is holomorphic at the origin). In the paper under review, the generating function is \(\gamma (\lambda )h(x,\alpha (\lambda ))\), where \(\gamma :\;H\to \mathbb C\) and \(\alpha :\;H\to H\) are holomorphic at the origin. Properties of the resulting spaces are investigated.
0 references