Recursion formulas for HOMFLY and Kauffman invariants (Q2878657)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Recursion formulas for HOMFLY and Kauffman invariants |
scientific article; zbMATH DE number 6339608
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Recursion formulas for HOMFLY and Kauffman invariants |
scientific article; zbMATH DE number 6339608 |
Statements
Recursion formulas for HOMFLY and Kauffman invariants (English)
0 references
4 September 2014
0 references
classical Lie algebras
0 references
skein module
0 references
HOMFLY invariant
0 references
Kauffman invariant
0 references
tangle category
0 references
covariant funktor
0 references
Embeddings of simple Lie algebras which are consistent with embeddings of their Dynkin diagrams induce embeddings of the corresponding quantized universal enveloping algebras. In the case of classical Lie algebras, we have the following:NEWLINENEWLINE\((0.1): U_q (sl_{n-k})\otimes U_q(sl_k)\subset U_q(sl_n),\)NEWLINENEWLINE\((0.2): U_q (sl_{k})\otimes U_q(so_{2n-2k})\subset U_q(so_{2n}), U_q (sl_{k})\otimes U_q(sp_{2n-2k})\subset U_q(sp_{2n})\)NEWLINENEWLINE\((0.3): U_q (sl_{k})\otimes U_q(so_{2n-2k+1})\subset U_q(so_{2n+1}),\)NEWLINENEWLINE\((0.4): U_q (sl_{n})\subset U_q(so_{2n}), U_q (sl_{n})\subset U_q(sp_{2n}), U_q (sl_{n})\subset U_q(so_{2n+1}). \)NEWLINENEWLINEIn Section 1, starting from the tangle category \(\underline{Tan}_{{\mathbb C}[t^{\pm 1},q^{\pm 1}]}\), the authors construct a covariant functor \(\phi_{q;t,q}\) from the braided monoidal category \({\mathcal H}_{q;tq}\) (HOMFLY skein modules) to the braided monoidal category \({\mathcal H}_{q;t,q}\). The functor \(\phi_{q;t,q}\) gives a recursive relation for HOMFLY polynomials of framed links. The recursion corresponds to the embedding \((0.1)\) with \(k=1\).NEWLINENEWLINEThis recursion formula is extended to all \(k\) for HOMFLY polynomials by constructing the corresponding covariant braided monoidal functor from one skein category to another (Section 2), see also \textit{F. Jaeger} [Enseign. Math. (2) 35, No. 3--4, 323--361 (1989; Zbl 0705.57004)]NEWLINENEWLINEIn Section 3, the authors describe the recursion relations corresponding to the embeddings \((0.4)\) in a similar way.NEWLINENEWLINEIn Section 4, the authors define the skein category \({\mathcal K}_{q,s}\) corresponding to one of the classical Lie algebras \(so_{2n+1},so_{2n}\) or \(sp_{2n}\) and the skein category \({\mathcal HK}_{q;s,t}\) corresponding to products of HOMFLY and Kauffman invariants and describe the functor \( \chi _{q;s,t}: {\mathcal K}_{q,st^2}\to {\mathcal HK}_{q;s,t}\). This gives the recursion formula for Kauffman polynomial corresponding to embeddings \((0.2)\) and \((0.3)\) which is the main result of the given paper.
0 references