Brändén's conjectures on the Boros-Moll polynomials (Q2878679)

From MaRDI portal





scientific article; zbMATH DE number 6340082
Language Label Description Also known as
English
Brändén's conjectures on the Boros-Moll polynomials
scientific article; zbMATH DE number 6340082

    Statements

    0 references
    0 references
    0 references
    4 September 2014
    0 references
    Boros-Moll polynomials
    0 references
    log-concavity
    0 references
    Sturm sequences
    0 references
    Brändén's conjectures on the Boros-Moll polynomials (English)
    0 references
    Let \(\{d_i(n)\}_{i=0}^n\) be the Boros-Moll sequence. In [J. Reine Angew. Math. 658, 115--131 (2011; Zbl 1278.30007)], \textit{P. Brändén} conjectured that the polynomials \(Q_n(x)=\sum_{i=0}^n \frac{d_i(n)}{i!}x^i\) and \(R_n(x)=\sum_{i=0}^n \frac{d_i(n)}{(i+2)!}x^i\) have only real zeros. This implies the 2-log-concavity and the 3-log-concavity of \(\{d_i(n)\}\). The authors prove both conjectures by showing that \(Q_n(x)\) and \(R_n(x)\) form Sturm sequences.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references