Expanding the reciprocal of an entire function with zeros in a strip in a Kreĭn series (Q2880055)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Expanding the reciprocal of an entire function with zeros in a strip in a Kreĭn series |
scientific article; zbMATH DE number 6023008
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Expanding the reciprocal of an entire function with zeros in a strip in a Kreĭn series |
scientific article; zbMATH DE number 6023008 |
Statements
12 April 2012
0 references
entire function
0 references
partial fraction series
0 references
Expanding the reciprocal of an entire function with zeros in a strip in a Kreĭn series (English)
0 references
An entire function \(L(\lambda)\) with only real simple zeros \(\lambda_{k}\neq 0\), \(k=1,2,\dots\), is in the Kreĭn class if NEWLINE\[NEWLINE\begin{aligned} \frac{1}{L(\lambda)}&= R(\lambda)+\sum_{k=1}^{\infty}\frac{1}{L'(\lambda_{k})} \left\{\frac{1}{\lambda-\lambda_{k}}+\frac{1}{\lambda_{k}}+\frac{\lambda}{\lambda_{k}^{2}}+\cdots+\frac{\lambda^{p-1}}{\lambda_{k}^{p}}\right\}\\ &= R(\lambda)+\lambda^{p}\sum_{k=1}^{\infty}\frac{1}{L'(\lambda_{k})\lambda_{k}^{p}}\cdot\frac{1}{\lambda-\lambda_{k}}\end{aligned} NEWLINE\]NEWLINE for some integer \(p\geq 0\), where NEWLINE\[NEWLINE \sum_{k=1}^{\infty}\frac{1}{|\lambda_{k}|^{p}|L'(\lambda_{k})|}<\infty NEWLINE\]NEWLINE and \(R(\lambda)\) is a polynomial.NEWLINENEWLINEIn this paper, the author solves the problem of representing \(\frac{1}{L(\lambda)}\) by a partial fraction series in the case when \(L(\lambda)\) is an entire function with only simple zeros, all of which lie in some strip.
0 references