Expanding the reciprocal of an entire function with zeros in a strip in a Kreĭn series (Q2880055)

From MaRDI portal





scientific article; zbMATH DE number 6023008
Language Label Description Also known as
English
Expanding the reciprocal of an entire function with zeros in a strip in a Kreĭn series
scientific article; zbMATH DE number 6023008

    Statements

    0 references
    12 April 2012
    0 references
    entire function
    0 references
    partial fraction series
    0 references
    Expanding the reciprocal of an entire function with zeros in a strip in a Kreĭn series (English)
    0 references
    An entire function \(L(\lambda)\) with only real simple zeros \(\lambda_{k}\neq 0\), \(k=1,2,\dots\), is in the Kreĭn class if NEWLINE\[NEWLINE\begin{aligned} \frac{1}{L(\lambda)}&= R(\lambda)+\sum_{k=1}^{\infty}\frac{1}{L'(\lambda_{k})} \left\{\frac{1}{\lambda-\lambda_{k}}+\frac{1}{\lambda_{k}}+\frac{\lambda}{\lambda_{k}^{2}}+\cdots+\frac{\lambda^{p-1}}{\lambda_{k}^{p}}\right\}\\ &= R(\lambda)+\lambda^{p}\sum_{k=1}^{\infty}\frac{1}{L'(\lambda_{k})\lambda_{k}^{p}}\cdot\frac{1}{\lambda-\lambda_{k}}\end{aligned} NEWLINE\]NEWLINE for some integer \(p\geq 0\), where NEWLINE\[NEWLINE \sum_{k=1}^{\infty}\frac{1}{|\lambda_{k}|^{p}|L'(\lambda_{k})|}<\infty NEWLINE\]NEWLINE and \(R(\lambda)\) is a polynomial.NEWLINENEWLINEIn this paper, the author solves the problem of representing \(\frac{1}{L(\lambda)}\) by a partial fraction series in the case when \(L(\lambda)\) is an entire function with only simple zeros, all of which lie in some strip.
    0 references
    0 references

    Identifiers