\(W_\omega^{2,p}\)-solvability of the Cauchy-Dirichlet problem for nondivergence parabolic equations with BMO coefficients (Q2880085)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(W_\omega^{2,p}\)-solvability of the Cauchy-Dirichlet problem for nondivergence parabolic equations with BMO coefficients |
scientific article; zbMATH DE number 6023032
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(W_\omega^{2,p}\)-solvability of the Cauchy-Dirichlet problem for nondivergence parabolic equations with BMO coefficients |
scientific article; zbMATH DE number 6023032 |
Statements
12 April 2012
0 references
nondoubling weighted spaces
0 references
strong solutions
0 references
0.94501996
0 references
0.9308816
0 references
0.91960156
0 references
0.90152824
0 references
0.9004111
0 references
0.8983654
0 references
0.89800715
0 references
0.89751166
0 references
0.89553046
0 references
0.8954876
0 references
\(W_\omega^{2,p}\)-solvability of the Cauchy-Dirichlet problem for nondivergence parabolic equations with BMO coefficients (English)
0 references
The author studies global reguarity in nondoubling weighted spaces of strong solutions to the Cauchy-Dirichlet problem for nondivergent parabolic equations with parameter \(\lambda\geq 0\) defined by NEWLINE\[NEWLINE u_t-\sum_{i,j=1}^n a_{ij}(x)D_{ij}u(x)+\lambda u=f\quad \text{a.e. in } \;\Omega_T. NEWLINE\]
0 references