Prime end rotation numbers of invariant separating continua of annular homeomorphisms (Q2880643)

From MaRDI portal





scientific article; zbMATH DE number 6024091
Language Label Description Also known as
English
Prime end rotation numbers of invariant separating continua of annular homeomorphisms
scientific article; zbMATH DE number 6024091

    Statements

    Prime end rotation numbers of invariant separating continua of annular homeomorphisms (English)
    0 references
    13 April 2012
    0 references
    continuum
    0 references
    rotation set
    0 references
    prime end rotation number
    0 references
    Brower line
    0 references
    foliations
    0 references
    The author considers a homeomorphism of the closed annulus, isotopic to the identity. Let \(X\) be an invariant connected compact set separating the annulus into two connected invariant domains (upper and lower), each containing the corresponding boundary of the annulus. Fixing a lift to the universal cover of the the annulus, one defines a rotation set by means of the invariant measures on \(X\), as well as the prime end rotation numbers of the upper and lower domains. The author shows that these prime end rotation numbers belong to the rotation set, for any choice of \(X\).
    0 references

    Identifiers