Sharp bounds for general commutators on weighted Lebesgue spaces (Q2880677)

From MaRDI portal





scientific article; zbMATH DE number 6024123
Language Label Description Also known as
English
Sharp bounds for general commutators on weighted Lebesgue spaces
scientific article; zbMATH DE number 6024123

    Statements

    Sharp bounds for general commutators on weighted Lebesgue spaces (English)
    0 references
    13 April 2012
    0 references
    commutators
    0 references
    Muckenhoupt weights
    0 references
    BMO
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    Let \(T\) be a linear operator of functions on \(\mathbb{R}^n\). If it satisfies the weighted operator norm estimate \(\|T\|_{B(L^2(w))}\leq\varphi([w]_{A_2})\) for all Muckenhoupt weights \(w\in A_2\) and a fixed increasing function \(\varphi\), then its commutator with a BMO function \(b\) satisfies NEWLINE\[NEWLINE\|[b,T]\|_{B(L^2(w))}\leq c_n\varphi(\gamma_n[w]_{A_2})[w]_{A_2}\|b\|_{BMO},NEWLINE\]NEWLINE and this may be iterated for higher order commutators. The proof is based on tracking the sharp bounds in a Cauchy integral trick going back to \textit{R. Coifman, R. Rochberg} and \textit{G. Weiss} [ Ann. Math. (2) 103, No. 3, 611--635 (1976; Zbl 0326.32011)]: for \(\mathcal T_b(z) f:=e^{zb}T(e^{-zb}f)\), we have \([b,T]=\mathcal T_b'(0)=(2\pi i)^{-1}\int_{|z|=\epsilon}\mathcal T_b(z)dz/z^2\), and \([we^{\text{Re}(zb)}]_{A_2}\leq\beta_n[w]_{A_2}\) as soon as \(|z|\cdot\|b\|_{BMO}<\alpha_n\).
    0 references

    Identifiers