The resultant of Chebyshev polynomials (Q2882475)

From MaRDI portal





scientific article; zbMATH DE number 6030872
Language Label Description Also known as
English
The resultant of Chebyshev polynomials
scientific article; zbMATH DE number 6030872

    Statements

    0 references
    0 references
    0 references
    4 May 2012
    0 references
    resultant
    0 references
    Chebyshev polynomial
    0 references
    The resultant of Chebyshev polynomials (English)
    0 references
    In the article under review, the authors give explicit formulas for the resultant of two Chebyshev polynomials. In particular, they prove the following. Let \(m\) and \(n\) be natural numbers not both equal to zero. Then NEWLINE\[NEWLINE\text{res}\left(T_m,T_n\right)=\begin{cases} 0& \text{if \(m/g\) and \(n/g\) are both odd,}\\ \left(-1\right)^{\frac{mn}{2}}2^{(m-1)(n-1)+g-1}& \text{otherwise,} \end{cases}NEWLINE\]NEWLINE where \(g=\gcd(m,n)\) and \(T_k\) denotes the \(k\)th Chebyshev polynomial of the first kind, and NEWLINE\[NEWLINE\text{res}\left(U_m,U_n\right)=\begin{cases} 0& \text{if \(\gcd(m+1,n+1)\neq 1\),}\\ \left(-1\right)^{\frac{mn}{2}}2^{mn}& \text{otherwise,} \end{cases}NEWLINE\]NEWLINE where \(U_k\) denotes the \(k\)th Chebyshev polynomial of the second kind.NEWLINENEWLINE The proofs are elementary.
    0 references
    0 references

    Identifiers