The resultant of Chebyshev polynomials (Q2882475)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The resultant of Chebyshev polynomials |
scientific article; zbMATH DE number 6030872
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The resultant of Chebyshev polynomials |
scientific article; zbMATH DE number 6030872 |
Statements
4 May 2012
0 references
resultant
0 references
Chebyshev polynomial
0 references
The resultant of Chebyshev polynomials (English)
0 references
In the article under review, the authors give explicit formulas for the resultant of two Chebyshev polynomials. In particular, they prove the following. Let \(m\) and \(n\) be natural numbers not both equal to zero. Then NEWLINE\[NEWLINE\text{res}\left(T_m,T_n\right)=\begin{cases} 0& \text{if \(m/g\) and \(n/g\) are both odd,}\\ \left(-1\right)^{\frac{mn}{2}}2^{(m-1)(n-1)+g-1}& \text{otherwise,} \end{cases}NEWLINE\]NEWLINE where \(g=\gcd(m,n)\) and \(T_k\) denotes the \(k\)th Chebyshev polynomial of the first kind, and NEWLINE\[NEWLINE\text{res}\left(U_m,U_n\right)=\begin{cases} 0& \text{if \(\gcd(m+1,n+1)\neq 1\),}\\ \left(-1\right)^{\frac{mn}{2}}2^{mn}& \text{otherwise,} \end{cases}NEWLINE\]NEWLINE where \(U_k\) denotes the \(k\)th Chebyshev polynomial of the second kind.NEWLINENEWLINE The proofs are elementary.
0 references