Triangles of Baumslag-Solitar groups. (Q2882882)

From MaRDI portal





scientific article; zbMATH DE number 6032948
Language Label Description Also known as
English
Triangles of Baumslag-Solitar groups.
scientific article; zbMATH DE number 6032948

    Statements

    0 references
    11 May 2012
    0 references
    triangles of groups
    0 references
    Baumslag-Solitar groups
    0 references
    Triangles of Baumslag-Solitar groups. (English)
    0 references
    Let NEWLINE\[NEWLINEG=G(a,b;c,d;e,f)=\langle x,y,z\mid yx^ay^{-1}=x^b,\;zy^cz^{-1}=y^d,\;xz^ex^{-1}=z^f\rangle,NEWLINE\]NEWLINE where \(a\), \(b\), \(c\), \(d\), \(e\), \(f\) are nonzero integers. \(G\) can be realized as a triangle of groups in which the vertex groups are the Baumslag-Solitar groups NEWLINE\[NEWLINEB_1(a,b)=\langle x,y\mid yx^ay^{-1}=x^b\rangle,\;B_2(c,d)=\langle y,z\mid zy^cz^{-1}=y^d\rangle,\;B_3(c,f)=\langle z,x\mid xz^ex^{-1}= z^f\rangle,NEWLINE\]NEWLINE and \(\langle y\rangle\), \(\langle z\rangle\) and \(\langle x\rangle\) are vertex groups, respectively.NEWLINENEWLINE This interesting paper describes conditions on \(a\), \(b\), \(c\), \(d\), \(e\), \(f\) under which \(B_1(a,b)\), \(B_2(c,d)\) and \(B_3(e,f)\) are embedable into \(G\). Furthermore, there are conditions under which \(G\) is finite.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references