On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces (Q2883250)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces |
scientific article; zbMATH DE number 6033701
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces |
scientific article; zbMATH DE number 6033701 |
Statements
11 May 2012
0 references
Euler-Boussinesq system
0 references
axisymmetric flows
0 references
global well-posedness
0 references
Besov spaces
0 references
math.AP
0 references
On the global existence for the axisymmetric Euler-Boussinesq system in critical Besov spaces (English)
0 references
The Cauchy problem to the Euler-Boussinesq system is studied in the paper. NEWLINE\[NEWLINE \begin{cases} \frac{\partial v}{\partial t}+(v\cdot\nabla)v+\nabla p=\rho\, e_z,\quad & x\in \mathbb{R}^3,\quad t>0, \\ \frac{\partial \rho}{\partial t}+v\cdot\nabla \rho -\Delta \rho=0,\quad \text{div}\,v=0,\quad & x\in \mathbb{R}^3,\quad t>0, \\ v(x,0)=v_0(x),\quad \rho(x,0)=\rho_0(x),\quad & x\in \mathbb{R}^3. \end{cases} NEWLINE\]NEWLINE Here \(v=(v_1,v_2,v_3)\) is the velocity, \(p\) is the pressure, \(\rho\) is the density, \(e_z=(0,0,1)\).NEWLINENEWLINEThe main result is the following theorem: Let \(v_0\in B^{5/2}_{2,1}\) be an axisymmetric vector field with zero divergence without swirl and \(\rho_0\in B^{1/2}_{2,1}\cap L^q\) be an axisymmetric function with \(q>6\); then there exists a unique global solution \((v,\rho)\) to the problem such that NEWLINE\[NEWLINE v\in C(\mathbb{R}_+;B^{5/2}_{2,1}),\quad \rho\in C(\mathbb{R}_+;B^{1/2}_{2,1}\cap L^q), NEWLINE\]NEWLINE where \(B^{\alpha}_{2,1}\) is Besov space. The assumption of axial symmetry plays a crucial role in a proof.
0 references