The finite part of divergent integrals with logarithmic factors (Q2883522)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The finite part of divergent integrals with logarithmic factors |
scientific article; zbMATH DE number 6032553
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The finite part of divergent integrals with logarithmic factors |
scientific article; zbMATH DE number 6032553 |
Statements
10 May 2012
0 references
divergent integral
0 references
finite part
0 references
analytic finite part
0 references
change of variables
0 references
The finite part of divergent integrals with logarithmic factors (English)
0 references
For given \(m\in\mathbb{N}_0=\{0,1,2,\dots\}\) and \(0<\alpha\leq 1\) let \(a\in C^m[0,R]\) satisfy the condition \(| a^{(m)}(r)-a^{(m)}(0)|\leq Mr^\alpha\) for some \(M>0\) and every \(r\in[0,R]\). The author considers the following integral depending on \(\lambda\in\mathbb{C}\) with a logarithmic factor NEWLINE\[NEWLINE \int_{0}^Ra(r)r^{-\lambda-1}(\ln r)^ndr. NEWLINE\]NEWLINE The finite part of this integral is defined as follows. Let \(\lambda\in\mathbb{C}\), \(\text{Re}\lambda<m+\alpha\). For \(\lambda\in\mathbb{C}\setminus\mathbb{N}_0\) NEWLINE\[NEWLINE \text{f.p.}\int_{0}^Ra(r)r^{-\lambda-1}(\ln r)^ndr=\int_0^R\Big[a(r)-\sum_{k=0}^m\frac{1}{k!}a^{(k)}(0)r^k\Big]r^{-\lambda-1}(\ln r)^ndr NEWLINE\]NEWLINE NEWLINE\[NEWLINE +\sum_{k=0}^m\frac{1}{k!}a^{(k)}(0)R^{k-\lambda}\sum_{j=0}^n(-1)^{n-j}\frac{n!}{j!}\cdot\frac{(\ln R)^j}{(k-\lambda)^{n-j+1}}; NEWLINE\]NEWLINE while for \(\lambda=l\in\mathbb{N}_0\) NEWLINE\[NEWLINE \text{f.p.}\int_{0}^Ra(r)r^{-l-1}(\ln r)^ndr=\int_0^R\Big[a(r)-\sum_{k=0}^m\frac{1}{k!}a^{(k)}(0)r^k\Big]r^{-l-1}(\ln r)^ndr NEWLINE\]NEWLINE NEWLINE\[NEWLINE +\sum_{k=0, k\neq l}^m\frac{1}{k!}a^{(k)}(0)R^{k-l}\sum_{j=0}^n(-1)^{n-j}\frac{n!}{j!}\cdot\frac{(\ln R)^j}{(k-\lambda)^{n-j+1}}+\frac{1}{l!}a^{(l)}(0)\frac{(\ln R)^{n+1}}{n+1}. NEWLINE\]NEWLINE This definition is based on the expansion of the absolutely integrable function \(a\) in a Taylor expansion with centre at the singular point. An analytic finite part of the integral is also defined. The paper is devoted to studying the change of variable in finite part and analytic finite part integrals.
0 references