The finite part of divergent integrals with logarithmic factors (Q2883522)

From MaRDI portal





scientific article; zbMATH DE number 6032553
Language Label Description Also known as
English
The finite part of divergent integrals with logarithmic factors
scientific article; zbMATH DE number 6032553

    Statements

    0 references
    10 May 2012
    0 references
    divergent integral
    0 references
    finite part
    0 references
    analytic finite part
    0 references
    change of variables
    0 references
    The finite part of divergent integrals with logarithmic factors (English)
    0 references
    For given \(m\in\mathbb{N}_0=\{0,1,2,\dots\}\) and \(0<\alpha\leq 1\) let \(a\in C^m[0,R]\) satisfy the condition \(| a^{(m)}(r)-a^{(m)}(0)|\leq Mr^\alpha\) for some \(M>0\) and every \(r\in[0,R]\). The author considers the following integral depending on \(\lambda\in\mathbb{C}\) with a logarithmic factor NEWLINE\[NEWLINE \int_{0}^Ra(r)r^{-\lambda-1}(\ln r)^ndr. NEWLINE\]NEWLINE The finite part of this integral is defined as follows. Let \(\lambda\in\mathbb{C}\), \(\text{Re}\lambda<m+\alpha\). For \(\lambda\in\mathbb{C}\setminus\mathbb{N}_0\) NEWLINE\[NEWLINE \text{f.p.}\int_{0}^Ra(r)r^{-\lambda-1}(\ln r)^ndr=\int_0^R\Big[a(r)-\sum_{k=0}^m\frac{1}{k!}a^{(k)}(0)r^k\Big]r^{-\lambda-1}(\ln r)^ndr NEWLINE\]NEWLINE NEWLINE\[NEWLINE +\sum_{k=0}^m\frac{1}{k!}a^{(k)}(0)R^{k-\lambda}\sum_{j=0}^n(-1)^{n-j}\frac{n!}{j!}\cdot\frac{(\ln R)^j}{(k-\lambda)^{n-j+1}}; NEWLINE\]NEWLINE while for \(\lambda=l\in\mathbb{N}_0\) NEWLINE\[NEWLINE \text{f.p.}\int_{0}^Ra(r)r^{-l-1}(\ln r)^ndr=\int_0^R\Big[a(r)-\sum_{k=0}^m\frac{1}{k!}a^{(k)}(0)r^k\Big]r^{-l-1}(\ln r)^ndr NEWLINE\]NEWLINE NEWLINE\[NEWLINE +\sum_{k=0, k\neq l}^m\frac{1}{k!}a^{(k)}(0)R^{k-l}\sum_{j=0}^n(-1)^{n-j}\frac{n!}{j!}\cdot\frac{(\ln R)^j}{(k-\lambda)^{n-j+1}}+\frac{1}{l!}a^{(l)}(0)\frac{(\ln R)^{n+1}}{n+1}. NEWLINE\]NEWLINE This definition is based on the expansion of the absolutely integrable function \(a\) in a Taylor expansion with centre at the singular point. An analytic finite part of the integral is also defined. The paper is devoted to studying the change of variable in finite part and analytic finite part integrals.
    0 references
    0 references

    Identifiers