Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain (Q2884720)

From MaRDI portal





scientific article; zbMATH DE number 6036410
Language Label Description Also known as
English
Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain
scientific article; zbMATH DE number 6036410

    Statements

    0 references
    0 references
    18 May 2012
    0 references
    Dirichlet Laplace operator
    0 references
    eigenvalues
    0 references
    spectral asymptotics
    0 references
    semiclassical limit
    0 references
    Weyl's law
    0 references
    math.SP
    0 references
    math-ph
    0 references
    math.MP
    0 references
    Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain (English)
    0 references
    The authors prove that the sum of the negative eigenvalues of the operator \(-h^{2} \Delta -1\) in a bounded domain \(\Omega\), \(\partial \Omega \in C^{1,\alpha}\), \(0< \alpha \leq 1\), has an asymptotic limit when \(h \rightarrow 0_{+}\), equal with \(L_{d} | \Omega | h^{-d} - (1/4)L^{d-1} | \partial \Omega | h^{-d+1}+O(h^{-d+1+\alpha/(2+\alpha)}\). Here, \(L_{d} = \int{( | p |^{2}-1)_{-}} \, dp\). For the proof of this result, the authors provide a direct approach and avoid the use of microlocal analysis (which requires more smoothness on \( \partial \Omega\)).NEWLINENEWLINEFor the entire collection see [Zbl 1234.81016].
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references