Estimates for parameter Littlewood-Paley \(g_\kappa^\ast\) functions on nonhomogeneous metric measure spaces (Q288779)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Estimates for parameter Littlewood-Paley \(g_\kappa^\ast\) functions on nonhomogeneous metric measure spaces |
scientific article; zbMATH DE number 6586458
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Estimates for parameter Littlewood-Paley \(g_\kappa^\ast\) functions on nonhomogeneous metric measure spaces |
scientific article; zbMATH DE number 6586458 |
Statements
Estimates for parameter Littlewood-Paley \(g_\kappa^\ast\) functions on nonhomogeneous metric measure spaces (English)
0 references
27 May 2016
0 references
This paper studies the mapping properties of the parameter \(g^{\ast}_{\kappa}\) functions on nonhomogeneous metric measure spaces. The Marcinkiewicz integrals and the parameter Littlewood-Paley functions are members of the family of the parameter \(g^{\ast}_{\kappa}\) functions. This paper obtains the boundedness of the parameter \(g^{\ast}_{\kappa}\) functions on Lebesgue spaces and on the atomic Hardy spaces.
0 references
Littlewood-Paley functions
0 references
Marcinkiewicz integrals
0 references
nonhomogeneous metric measure spaces
0 references
atomic Hardy spaces
0 references
0 references
0 references
0 references
0 references
0 references
0.9362375
0 references
0.92279357
0 references
0.9192038
0 references
0.9094119
0 references
0.9019077
0 references
0.8989515
0 references
0.89657295
0 references
0.88669723
0 references