Affine-regular hexagons in the parallelogram space (Q2888149)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Affine-regular hexagons in the parallelogram space |
scientific article; zbMATH DE number 6039646
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Affine-regular hexagons in the parallelogram space |
scientific article; zbMATH DE number 6039646 |
Statements
30 May 2012
0 references
affine-regular hexagon
0 references
parallelogram space
0 references
Affine-regular hexagons in the parallelogram space (English)
0 references
For any set \(Q\), a subset \(\Omega\) of \(Q^4\) is called a set of parallelograms if \(\Omega\) satisfies the natural propertiesNEWLINENEWLINE(i) for any \((a,b,c) \in Q^3\), there is a unique \(d\) in \(Q\) such that \((a,b,c,d) \in \Omega\),NEWLINENEWLINE (ii) if \((a,b,c,d) \in \Omega\), then \((e,f,g,h) \in \Omega\) for every cyclic permutation \((e,f,g,h)\) of \((a,b,c,d)\) or of \((d,c,b,a)\),NEWLINENEWLINE (iii) if \((a,b,c,d), (c,d,e,f) \in \Omega\), then \((a,b,f,e) \in \Omega\).NEWLINENEWLINE One then calls \((Q,\Omega)\) a parallelogram space. In such a space, an affine-regular hexagon is defined to be a set \(a_1, \cdots, a_6\) of six points (called the vertices) together with a center \(O\) such that \((O,a_{i-1},a_i,a_{i+1}) \in \Omega\) for all \(i\), where indices are taken mod 6.NEWLINENEWLINE The authors of the paper under review establish several properties of affine-regular hexagons in a parallelogram space.
0 references