Affine-regular hexagons in the parallelogram space (Q2888149)

From MaRDI portal





scientific article; zbMATH DE number 6039646
Language Label Description Also known as
English
Affine-regular hexagons in the parallelogram space
scientific article; zbMATH DE number 6039646

    Statements

    0 references
    0 references
    0 references
    30 May 2012
    0 references
    affine-regular hexagon
    0 references
    parallelogram space
    0 references
    Affine-regular hexagons in the parallelogram space (English)
    0 references
    For any set \(Q\), a subset \(\Omega\) of \(Q^4\) is called a set of parallelograms if \(\Omega\) satisfies the natural propertiesNEWLINENEWLINE(i) for any \((a,b,c) \in Q^3\), there is a unique \(d\) in \(Q\) such that \((a,b,c,d) \in \Omega\),NEWLINENEWLINE (ii) if \((a,b,c,d) \in \Omega\), then \((e,f,g,h) \in \Omega\) for every cyclic permutation \((e,f,g,h)\) of \((a,b,c,d)\) or of \((d,c,b,a)\),NEWLINENEWLINE (iii) if \((a,b,c,d), (c,d,e,f) \in \Omega\), then \((a,b,f,e) \in \Omega\).NEWLINENEWLINE One then calls \((Q,\Omega)\) a parallelogram space. In such a space, an affine-regular hexagon is defined to be a set \(a_1, \cdots, a_6\) of six points (called the vertices) together with a center \(O\) such that \((O,a_{i-1},a_i,a_{i+1}) \in \Omega\) for all \(i\), where indices are taken mod 6.NEWLINENEWLINE The authors of the paper under review establish several properties of affine-regular hexagons in a parallelogram space.
    0 references

    Identifiers