On multidimensional Bochner-Phillips functional calculus (Q2888242)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On multidimensional Bochner-Phillips functional calculus |
scientific article; zbMATH DE number 6039754
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On multidimensional Bochner-Phillips functional calculus |
scientific article; zbMATH DE number 6039754 |
Statements
30 May 2012
0 references
semigroup of operators
0 references
semigroup generator
0 references
functional calculus
0 references
Bernstein function
0 references
math.FA
0 references
On multidimensional Bochner-Phillips functional calculus (English)
0 references
Let \({\mathcal T}_n\) be the class of functions \(\psi \in C^{\infty}((-\infty,0)^n)\) with \(\partial^{\alpha}\psi \geq 0\) for all multi-indices \(\alpha\). Each function \(\psi \in {\mathcal T}_n\) allows the integral representation \(\psi(s)=c_0+c_1\cdot s+\int_{\mathbb R^n_{+} \backslash \{ 0 \}} (e^{s\cdot u}-1) \, d\mu (u)\) with \(c_0=\psi(-0)\), \(c_1 \in \mathbb R^n_{+}\), and a positive measure \(\mu\) on \(\mathbb R^n_{+}\backslash \{ 0 \}\). Suppose that we are given commuting bounded \(C_0\)-semigroups \(T_1, \dots, T_n\) in a complex Banach space \(X\) with generators \(A=(A_1,\dots,A_n)\). The author studies the multidimensional operator calculus defined by \(\psi(A)x=c_0 x+c_1\cdot Ax+ \int_{\mathbb R^n_{+}\backslash \{ 0 \}} (T(u)-I)x \, d\mu(u)\), where \(T(u)=(T_1(u_1),\dots,T_n(u_n))\), \(c_1\cdot Ax=\sum_{j=1}^n c_1^j A_j x\), and \(D(A)=\cap_{j=1}^n D(A_j)\).
0 references