Limits of multipole pluricomplex Green functions (Q2888830)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Limits of multipole pluricomplex Green functions |
scientific article; zbMATH DE number 6042651
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Limits of multipole pluricomplex Green functions |
scientific article; zbMATH DE number 6042651 |
Statements
4 June 2012
0 references
pluricomplex Green function
0 references
complex Monge-Ampère operator
0 references
ideals of holomorphic functions
0 references
Hilbert-Samuel multiplicity
0 references
0 references
0 references
0.92097163
0 references
0 references
0.91098833
0 references
0.9107541
0 references
0.9084034
0 references
0.9065966
0 references
0.9054966
0 references
Limits of multipole pluricomplex Green functions (English)
0 references
The authors consider a family \((S_\epsilon)_\epsilon\) of \(N\) poles \((a_\epsilon)\) in a bounded hyperconvex domain \(\Omega\) in \(\mathbb C^n\), and they study the convergence of the vanishing ideals \(\mathcal I_\epsilon\) associated to \(S_\epsilon\) and the pluricomplex Green functions \(G_\epsilon:=G_{\mathcal I_\epsilon}\).NEWLINENEWLINE The main result is that if all \(N\) points \(a_\epsilon\) go to \(0\) and if \(\lim_{\epsilon\to 0}\mathcal I_\epsilon=\mathcal I\), then \((G_\epsilon)_\epsilon\) converges to \(G_{\mathcal I}\) locally uniformly on \(\Omega\smallsetminus\{0\}\) if and only if \(\mathcal I\) is a complete intersection ideal. The proofs of the results are based essentially on some estimates for the Hilbert-Samuel multiplicity of the ideal \(\mathcal I\) and the Monge-Ampère operator associated to the plurisubharmonic function \(G_{\mathcal I}\).
0 references