Boundedness of Riesz transforms on weighted Carleson measure spaces (Q2889263)

From MaRDI portal





scientific article; zbMATH DE number 6043116
Language Label Description Also known as
English
Boundedness of Riesz transforms on weighted Carleson measure spaces
scientific article; zbMATH DE number 6043116

    Statements

    Boundedness of Riesz transforms on weighted Carleson measure spaces (English)
    0 references
    0 references
    6 June 2012
    0 references
    weighted Carleson measure spaces
    0 references
    duality
    0 references
    weighted Hardy spaces
    0 references
    Riesz transforms
    0 references
    Let \(R_j\), \(j = 1, \dotsc, n\), be the Riesz transforms in \(\mathbb{R}^n\) defined by NEWLINE\[NEWLINER_jf(x) = \mathrm{p}.\mathrm{v}. (K_j * f)(x),NEWLINE\]NEWLINE where \(K_j(x) = \pi^{-(n+1)/2}\Gamma(\frac{n+1}{2})\frac{x_j}{|x|^{n+1}}\). Let \(w\) be in the Muckenhoupt \(A_\infty\) weight class.NEWLINENEWLINEIn this paper, the author proves that the Riesz transforms \(R_j\) (\(j = 1, \dotsc, n\)) are bounded on the weighted Carleson measure spaces \(\text{CMO}_w^p\), which is the dual of the weighted Hardy spaces \(H^p_w,\;0< p \leq 1\).
    0 references
    0 references

    Identifiers