A class of singular integral operators associated to surfaces of revolution (Q2890819)

From MaRDI portal





scientific article; zbMATH DE number 6045461
Language Label Description Also known as
English
A class of singular integral operators associated to surfaces of revolution
scientific article; zbMATH DE number 6045461

    Statements

    0 references
    0 references
    12 June 2012
    0 references
    singular integrals
    0 references
    surface of revolution
    0 references
    maximal operator
    0 references
    rough kernel
    0 references
    A class of singular integral operators associated to surfaces of revolution (English)
    0 references
    In \(\mathbb R^n\), \(n\geq 2\), consider the unit sphere \(S^{n-1}\) equipped with the normalized Lebesgue measure \(d\sigma\), a suitable function \(\phi:[0,+\infty)\to\mathbb{R}\), a homogeneous function \(\Omega\in L^1(S^{n-1})\) of degree zero on \(\mathbb{R}^n\) satisfying NEWLINE\[NEWLINE\int_{S^{n-1}} \Omega(y|y|^{-1})\,d\sigma(y|y|^{-1})= 0,NEWLINE\]NEWLINE a radial measurable function \(h\) and the singular integral operator NEWLINE\[NEWLINET_{\phi,h}(f)(x, x_{n+1})= \text{p.v. }\int_{\mathbb{R}^n} h(|y|)\,\Omega(y|y|^{-1})|y|^{-n} f(x- y,x_{n+1}- \phi(|y|))\,dyNEWLINE\]NEWLINE for \(f\in S^{n+1}\) and \((x, x_{n+1})\in \mathbb{R}^n\times \mathbb{R}\).NEWLINENEWLINE Assuming \(h\in L^2(\mathbb{R}^+, r^{-1} dr)\) and \(\Omega\in L(\log^+ L)^{2^{-1}}(S^{n-1})\), the authors prove that for \(1< p<+\infty\), NEWLINE\[NEWLINE\| T_{\phi, h}(f)\|_{L^2(\mathbb{R}^{n+1})}\leq C\| f\|_{L^2(\mathbb{R}^{n+1})},NEWLINE\]NEWLINE NEWLINE\[NEWLINE\| T_{\phi, h}(f)\|_{L^p(\mathbb{R}^{n+1})}\leq C\| f\|_{L^2(\mathbb{R}^{n+ 1})}NEWLINE\]NEWLINE and the lower-dimensional maximal operator \(M_\phi\) defined by NEWLINE\[NEWLINEM_\phi(f)(r,s)= \sup_{R>0}\, R^{-1} \int^T_{\mathbb{R}^{2^{-1}}} |f(r-t, s-\phi(t))|\,dtNEWLINE\]NEWLINE is bounded on \(L^p(\mathbb{R}^2)\).
    0 references

    Identifiers