Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces (Q2891098)

From MaRDI portal





scientific article; zbMATH DE number 6045792
Language Label Description Also known as
English
Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces
scientific article; zbMATH DE number 6045792

    Statements

    0 references
    0 references
    0 references
    13 June 2012
    0 references
    Nonlinear wave operators
    0 references
    scattering
    0 references
    nonlinear Schr\"dinger equations
    0 references
    Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces (English)
    0 references
    The authors study nonlinear Schrödinger equations of the form NEWLINE\[NEWLINE i u_t + \frac 12 \Delta u = \lambda_1 u^3 + \lambda_2 \overline u^2 u + \lambda_3 \overline u^3 + \lambda_0 |u|^{2 } u, \quad \text{on}\,\, {\mathbb R}\times{\mathbb R}, NEWLINE\]NEWLINE and NEWLINE\[NEWLINE i u_t + \frac 12 \Delta u = \lambda_1 u^2 + \lambda_2 \overline u^2 + \lambda_0 |u| u , \quad \text{on}\,\, {\mathbb R}\times{\mathbb R}^2. NEWLINE\]NEWLINE For \(u_+\) small in suitable low order Sobolev spaces, the authors prove existence of a solution with final state \(u^+\). The arguments involve the construction of an approximate solution to the problem and a fixed point argument.
    0 references
    0 references

    Identifiers