Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces (Q2891098)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces |
scientific article; zbMATH DE number 6045792
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces |
scientific article; zbMATH DE number 6045792 |
Statements
13 June 2012
0 references
Nonlinear wave operators
0 references
scattering
0 references
nonlinear Schr\"dinger equations
0 references
0 references
0 references
0.9380548
0 references
0.9302387
0 references
0.92625916
0 references
0.9067932
0 references
0.89762205
0 references
0.89516497
0 references
0.8938902
0 references
0.8922014
0 references
Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces (English)
0 references
The authors study nonlinear Schrödinger equations of the form NEWLINE\[NEWLINE i u_t + \frac 12 \Delta u = \lambda_1 u^3 + \lambda_2 \overline u^2 u + \lambda_3 \overline u^3 + \lambda_0 |u|^{2 } u, \quad \text{on}\,\, {\mathbb R}\times{\mathbb R}, NEWLINE\]NEWLINE and NEWLINE\[NEWLINE i u_t + \frac 12 \Delta u = \lambda_1 u^2 + \lambda_2 \overline u^2 + \lambda_0 |u| u , \quad \text{on}\,\, {\mathbb R}\times{\mathbb R}^2. NEWLINE\]NEWLINE For \(u_+\) small in suitable low order Sobolev spaces, the authors prove existence of a solution with final state \(u^+\). The arguments involve the construction of an approximate solution to the problem and a fixed point argument.
0 references