Hardy-Littlewood and UMD Banach lattices via Bessel convolution operators (Q2891149)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hardy-Littlewood and UMD Banach lattices via Bessel convolution operators |
scientific article; zbMATH DE number 6045972
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hardy-Littlewood and UMD Banach lattices via Bessel convolution operators |
scientific article; zbMATH DE number 6045972 |
Statements
13 June 2012
0 references
Hardy-Littlewood
0 references
UMD spaces
0 references
Banach lattices
0 references
Bessel convolution
0 references
Hardy-Littlewood and UMD Banach lattices via Bessel convolution operators (English)
0 references
A Banach space \(X\) is called a UMD space if for \(l<p<\infty\) martingale difference sequences \(d=(d_1,d_2,\dots)\) in \(L^p_{[0,1]}\) are unconditional, i.e. there exists \(C_p>0\) such that \(\|\epsilon_1 d_1+\epsilon_2 d_2+\cdots\|\leq C_p \| d_1 +d_2 +\cdots\|\) whenever \(\epsilon_i,\;i=1,2,\dots\), are numbers in \([-1,1]\).NEWLINENEWLINE In the present paper the authors characterize the Banach lattices having the UMD and the Hardy-Littlewood properties.
0 references