Hardy-Littlewood and UMD Banach lattices via Bessel convolution operators (Q2891149)

From MaRDI portal





scientific article; zbMATH DE number 6045972
Language Label Description Also known as
English
Hardy-Littlewood and UMD Banach lattices via Bessel convolution operators
scientific article; zbMATH DE number 6045972

    Statements

    0 references
    0 references
    13 June 2012
    0 references
    Hardy-Littlewood
    0 references
    UMD spaces
    0 references
    Banach lattices
    0 references
    Bessel convolution
    0 references
    Hardy-Littlewood and UMD Banach lattices via Bessel convolution operators (English)
    0 references
    A Banach space \(X\) is called a UMD space if for \(l<p<\infty\) martingale difference sequences \(d=(d_1,d_2,\dots)\) in \(L^p_{[0,1]}\) are unconditional, i.e. there exists \(C_p>0\) such that \(\|\epsilon_1 d_1+\epsilon_2 d_2+\cdots\|\leq C_p \| d_1 +d_2 +\cdots\|\) whenever \(\epsilon_i,\;i=1,2,\dots\), are numbers in \([-1,1]\).NEWLINENEWLINE In the present paper the authors characterize the Banach lattices having the UMD and the Hardy-Littlewood properties.
    0 references

    Identifiers