Exceptional values of meromorphic functions and of their derivatives on annuli (Q2893045)

From MaRDI portal





scientific article; zbMATH DE number 6049669
Language Label Description Also known as
English
Exceptional values of meromorphic functions and of their derivatives on annuli
scientific article; zbMATH DE number 6049669

    Statements

    Exceptional values of meromorphic functions and of their derivatives on annuli (English)
    0 references
    0 references
    0 references
    25 June 2012
    0 references
    exceptional values
    0 references
    meromorphic function
    0 references
    doubly connected domain
    0 references
    The authors discuss the value distribution theory on annuli. Let \(f\) be a meromorphic function on the annulus \(A(R_0)=\{z:\;1/R_0<|z|<R_0\}\), where \(1<R_0\leq\infty\). For any positive integer \(k\), denote by \(\overline{n}_1^{k}(t,f,a)\) the number of distinct zeros of order at most \(k\) of \(f-a\) in \(\{z:\;t<|z|\leq 1\}\) and by \(\overline{n}_2^{k}(t,f,a)\) the number of distinct zeros of order at most \(k\) of \(f-a\) in \(\{z:\;1<|z|\leq t\}\). Define NEWLINE\[NEWLINE \overline{N}_0^k(R,f,a)=\int_{1/R}^1\frac{\overline{n}_1^{k}(t,f,a)}{t}dt+\int_{1}^R\frac{\overline{n}_2^{k}(t,f,a)}{t}dt NEWLINE\]NEWLINE and NEWLINE\[NEWLINE \overline{\rho}_k(a,f)=\limsup_{R\to\infty}\frac{\log \overline{N}_0^k(R,f,a)}{\log R}. NEWLINE\]NEWLINE The value \(a\) is said to be an exceptional value in the sense of Borel for \(f\) for distinct zeros of \(f-a\) of order at most \(k\) if \(\overline{\rho}_k(a,f)<\rho\). The main result is the following:NEWLINENEWLINE Let \(f\) be a meromorphic function of order \(\rho\) on \(A(\infty)\), and let \(a_1, \dots, a_q\) be distinct complex numbers in \(\mathbb C\cup \{\infty\}\) and \(k_j\) \((j=1, \dots, q)\) be positive integers or \(\infty\). If \(a_j\) is an exceptional value in the sense of Borel to \(f\) for distinct zeros of \(f-a\) of order at most \(k_j\) (\(j=1, \dots, q\)), then NEWLINE\[NEWLINE \sum_{j=1}^q \left(1-\frac1{k_j+1}\right)\leq 2. NEWLINE\]
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references