Symmetries and geometrically implied nonlinearities in mechanics and field theory (Q2895494)

From MaRDI portal





scientific article; zbMATH DE number 6052278
Language Label Description Also known as
English
Symmetries and geometrically implied nonlinearities in mechanics and field theory
scientific article; zbMATH DE number 6052278

    Statements

    0 references
    0 references
    3 July 2012
    0 references
    nonlinearity
    0 references
    Born-Infeld model
    0 references
    relativity
    0 references
    math-ph
    0 references
    math.MP
    0 references
    Symmetries and geometrically implied nonlinearities in mechanics and field theory (English)
    0 references
    Let \((M,g)\) be an \(n\)-dimensional Riemannian manifold, \(\Gamma\) a connection with non-zero curvature NEWLINENEWLINE\[ S^{\lambda}_{\;\mu\nu}=\tfrac{1}{2} (\Gamma^{\lambda}_{\;\mu\nu}-\Gamma^{\lambda}_{\;\nu\mu})\] NEWLINENEWLINEand NEWLINENEWLINE\[ J_1=g_{ia}g^{jb}g^{kc}S^{i}_{\,jk}S^{a}_{\;bc}, \quad J_2=g^{ij}S^{k}_{\;li}S^{l}_{\,kj}, \quad J_3=g^{ij}S^{a}_{\;ai}S^{b}_{\;bj}\] NEWLINENEWLINEthe Weitzenböck invariants. The authors replace the coefficients \((1,2,-4)\) in the Hilbert's Lagrangian NEWLINENEWLINE\[ R[g]\sqrt{|\det g|}=(J_1+2J_2-4J_4)\sqrt{|\det g|}+(\text{inessential \;part}) \] NEWLINENEWLINEwith arbitrary triple of real numbers. Such a modification spoils the local invariance under \(\mathrm{GL}(n,\mathbb{R})\)-action but preserves the global invariance under the group of Lorentz. Certain results of the first author concerning this last topic have been cited.NEWLINENEWLINENext the authors extend their ``\(\mathrm{GL}(n,\mathbb{R})\)-invariant gravity'' over the Born-Infeld model of electromagnetism with Lagrangian NEWLINE\[ {\mathcal L} = b^2 \sqrt{|\det [g_{\mu\nu}]|} -\sqrt{|\det[bg_{\mu\nu}+F_{\mu\nu}]|}, \qquad F_{\mu\nu}=\partial_\mu A_\nu - \partial_\nu A_\mu, \] NEWLINENEWLINE\(A_\mu\) being the 4-potential of the electromagnetic field.NEWLINENEWLINEFor the entire collection see [Zbl 1236.70002].
    0 references
    0 references

    Identifiers