Symmetries and geometrically implied nonlinearities in mechanics and field theory (Q2895494)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Symmetries and geometrically implied nonlinearities in mechanics and field theory |
scientific article; zbMATH DE number 6052278
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Symmetries and geometrically implied nonlinearities in mechanics and field theory |
scientific article; zbMATH DE number 6052278 |
Statements
3 July 2012
0 references
nonlinearity
0 references
Born-Infeld model
0 references
relativity
0 references
math-ph
0 references
math.MP
0 references
0.9289239
0 references
0.90441513
0 references
0.8986489
0 references
0.8954172
0 references
0.89507264
0 references
0.8932382
0 references
Symmetries and geometrically implied nonlinearities in mechanics and field theory (English)
0 references
Let \((M,g)\) be an \(n\)-dimensional Riemannian manifold, \(\Gamma\) a connection with non-zero curvature NEWLINENEWLINE\[ S^{\lambda}_{\;\mu\nu}=\tfrac{1}{2} (\Gamma^{\lambda}_{\;\mu\nu}-\Gamma^{\lambda}_{\;\nu\mu})\] NEWLINENEWLINEand NEWLINENEWLINE\[ J_1=g_{ia}g^{jb}g^{kc}S^{i}_{\,jk}S^{a}_{\;bc}, \quad J_2=g^{ij}S^{k}_{\;li}S^{l}_{\,kj}, \quad J_3=g^{ij}S^{a}_{\;ai}S^{b}_{\;bj}\] NEWLINENEWLINEthe Weitzenböck invariants. The authors replace the coefficients \((1,2,-4)\) in the Hilbert's Lagrangian NEWLINENEWLINE\[ R[g]\sqrt{|\det g|}=(J_1+2J_2-4J_4)\sqrt{|\det g|}+(\text{inessential \;part}) \] NEWLINENEWLINEwith arbitrary triple of real numbers. Such a modification spoils the local invariance under \(\mathrm{GL}(n,\mathbb{R})\)-action but preserves the global invariance under the group of Lorentz. Certain results of the first author concerning this last topic have been cited.NEWLINENEWLINENext the authors extend their ``\(\mathrm{GL}(n,\mathbb{R})\)-invariant gravity'' over the Born-Infeld model of electromagnetism with Lagrangian NEWLINE\[ {\mathcal L} = b^2 \sqrt{|\det [g_{\mu\nu}]|} -\sqrt{|\det[bg_{\mu\nu}+F_{\mu\nu}]|}, \qquad F_{\mu\nu}=\partial_\mu A_\nu - \partial_\nu A_\mu, \] NEWLINENEWLINE\(A_\mu\) being the 4-potential of the electromagnetic field.NEWLINENEWLINEFor the entire collection see [Zbl 1236.70002].
0 references