Eigenvalue asymptotics of perturbed selfadjoint operators (Q2896663)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Eigenvalue asymptotics of perturbed selfadjoint operators |
scientific article; zbMATH DE number 6056410
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Eigenvalue asymptotics of perturbed selfadjoint operators |
scientific article; zbMATH DE number 6056410 |
Statements
16 July 2012
0 references
perturbations of selfadjoint operators
0 references
eigenvalue asymptotics
0 references
math.SP
0 references
Eigenvalue asymptotics of perturbed selfadjoint operators (English)
0 references
The author studies perturbations of a selfadjoint positive operator \(T\) satisfying the \(\alpha\)-non-condenseness condition (\(\alpha >0\)): NEWLINE\[NEWLINE n(t^{1/\alpha}+0,T)-n((t-1)^{1/\alpha},T)\leq l\quad \text{for some } l\in \mathbb N, NEWLINE\]NEWLINE where \(n(r,T)\) is the number of eigenvalues of \(T\) on \((0,r)\) including their multiplicity.NEWLINENEWLINEConditions on a perturbation \(B\) are found under which NEWLINE\[NEWLINE | n(r,T)-n(r,T+B)| \leq C[n(r+ar^\gamma ,T)-n(r-ar^\gamma ,T)]+C_1 NEWLINE\]NEWLINE for some positive constants \(C,C_1,a\), and \(\gamma \in [0,1)\).
0 references