Eigenvalue asymptotics of perturbed selfadjoint operators (Q2896663)

From MaRDI portal





scientific article; zbMATH DE number 6056410
Language Label Description Also known as
English
Eigenvalue asymptotics of perturbed selfadjoint operators
scientific article; zbMATH DE number 6056410

    Statements

    0 references
    16 July 2012
    0 references
    perturbations of selfadjoint operators
    0 references
    eigenvalue asymptotics
    0 references
    math.SP
    0 references
    Eigenvalue asymptotics of perturbed selfadjoint operators (English)
    0 references
    The author studies perturbations of a selfadjoint positive operator \(T\) satisfying the \(\alpha\)-non-condenseness condition (\(\alpha >0\)): NEWLINE\[NEWLINE n(t^{1/\alpha}+0,T)-n((t-1)^{1/\alpha},T)\leq l\quad \text{for some } l\in \mathbb N, NEWLINE\]NEWLINE where \(n(r,T)\) is the number of eigenvalues of \(T\) on \((0,r)\) including their multiplicity.NEWLINENEWLINEConditions on a perturbation \(B\) are found under which NEWLINE\[NEWLINE | n(r,T)-n(r,T+B)| \leq C[n(r+ar^\gamma ,T)-n(r-ar^\gamma ,T)]+C_1 NEWLINE\]NEWLINE for some positive constants \(C,C_1,a\), and \(\gamma \in [0,1)\).
    0 references

    Identifiers