An elliptic problem with two singularities (Q2897186)

From MaRDI portal





scientific article; zbMATH DE number 6053768
Language Label Description Also known as
English
An elliptic problem with two singularities
scientific article; zbMATH DE number 6053768

    Statements

    0 references
    9 July 2012
    0 references
    degenerate elliptic problem
    0 references
    boundary value problem
    0 references
    weak solutions
    0 references
    singular lower order term
    0 references
    math.AP
    0 references
    An elliptic problem with two singularities (English)
    0 references
    The author considers the existence of solutions to the following problem NEWLINENEWLINE\[NEWLINE \begin{cases} -\mathrm{div}\, \left( \frac{a(x) \nabla u }{(1+| u | )^p}\right )&= \frac{f}{| u | ^{\gamma }} \text{ in }\quad \Omega ,\\ NEWLINE\qquad \qquad \qquad u&=0 \text{ on }\quad \partial \Omega , \end{cases} \tag{1} NEWLINE\]NEWLINE where \(\Omega \) is an open bounded set of \({\mathbb R}^N, N\geq 3\), \(p\) and \(\gamma \) are positive reals, \(f\in L^m(\Omega )\) is a non-negative function and \(a:\Omega \to {\mathbb R}\) is a measurable function such that \(0<\alpha \leq a(x) \leq \beta \) for two positive constants \(\alpha \) and \(\beta \). The author considers the existence of distribution solutions in the sense that for every \(\omega \Subset \Omega \) there exists \(c_{\omega }>0\) such that \(u\geq c_{\omega }>0 \) in \(\omega \) and NEWLINE\[NEWLINE \int _{\Omega } a(x) \frac{ \nabla u \cdot \nabla \phi }{(1+u )^p}dx = \int _{\Omega } \frac{f}{u^{\gamma }}\phi dx \quad \forall \phi \in C^{\infty }_{0} (\Omega ). \tag{2}NEWLINE\]NEWLINE The author gets the following theorem.NEWLINENEWLINETheorem. Let \(\gamma \geq p-1\). (1) Let \(\gamma < p+1\). (a) If \(f\in L^m (\Omega )\), with \(m\geq \frac{2^*}{2^* -p-1+\gamma }\), there exists a solution \(u \in H^1_0(\Omega )\) to (1) in the sense of (2). If \( \frac{2^*}{2^* -p-1+\gamma } \leq m < \frac{N}{2}\), then \(u \in L^{m^{**} (\gamma +1-p)}(\Omega )\). (b) If \(f \in L^m (\Omega )\), with \(\max \{1,\frac{1^*}{2\cdot 1^* -p-1+\gamma }\} < m< \frac{2^*}{2^* -p-1+\gamma }\), there exists a solution \(u \in W^{1,\sigma }_0(\Omega )\), \(\sigma = Nm(\gamma +1-p)/(N-m(p+1-\gamma ))\) to (1) in the sense of (2).NEWLINENEWLINE(2) Let \(\gamma =p+1\) and assume that \(f\in L^1(\Omega )\). Then there exists a solution \(u\in H^1_0(\Omega ) \) to (1) in the sense of (2).NEWLINENEWLINE(3) Let \(\gamma >p+1\) and assume that \(f\in L^1(\Omega )\). Then there exists a solution \(u\in H^1_{\mathrm{loc}}(\Omega ) \) to (1) in the sense of (2), such that \(u^{(\gamma +1-p)/2}\in H_0^1(\Omega )\).NEWLINENEWLINE(4) Let \(f\in L^m (\Omega )\), with \(m>N/2\). Then the solution found above is bounded.
    0 references

    Identifiers