Local Hölder regularity of solution of quasilinear parabolic equation with nonlinear operator of Baouendi-Grushin type. Part I (Q2901622)

From MaRDI portal





scientific article; zbMATH DE number 6062164
Language Label Description Also known as
English
Local Hölder regularity of solution of quasilinear parabolic equation with nonlinear operator of Baouendi-Grushin type. Part I
scientific article; zbMATH DE number 6062164

    Statements

    0 references
    31 July 2012
    0 references
    Local Hölder regularity of solution of quasilinear parabolic equation with nonlinear operator of Baouendi-Grushin type. Part I (English)
    0 references
    It is considered Cauchy problem for quasilinear degenerate parabolic equation of the following form NEWLINE\[NEWLINE u_t=div_L(| D_L| ^{\lambda-1}D_L), \quad (x,y,t)\in R^{N+M}\times (0,T), NEWLINE\]NEWLINE here \(\lambda>1\), \(N\geq 1\), \(M\geq 1\) NEWLINE\[NEWLINE D_Lu=(u_{x_1},\dots ,u_{x_N},| x| ^\alpha u_{y_1},\dots ,| x| ^\alpha u_{y_M}), NEWLINE\]NEWLINE NEWLINE\[NEWLINE div_L\overrightarrow{F}=\sum\limits^N_{i=1}F_{i,x_i}+| x| ^\alpha \sum\limits^M_{i=1}F_{i+N,y_i}.NEWLINE\]NEWLINE The author prove local Hölder regularity of weak solution of this problem.
    0 references

    Identifiers