Local Hölder regularity of solution of quasilinear parabolic equation with nonlinear operator of Baouendi-Grushin type. Part I (Q2901622)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Local Hölder regularity of solution of quasilinear parabolic equation with nonlinear operator of Baouendi-Grushin type. Part I |
scientific article; zbMATH DE number 6062164
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Local Hölder regularity of solution of quasilinear parabolic equation with nonlinear operator of Baouendi-Grushin type. Part I |
scientific article; zbMATH DE number 6062164 |
Statements
31 July 2012
0 references
Local Hölder regularity of solution of quasilinear parabolic equation with nonlinear operator of Baouendi-Grushin type. Part I (English)
0 references
It is considered Cauchy problem for quasilinear degenerate parabolic equation of the following form NEWLINE\[NEWLINE u_t=div_L(| D_L| ^{\lambda-1}D_L), \quad (x,y,t)\in R^{N+M}\times (0,T), NEWLINE\]NEWLINE here \(\lambda>1\), \(N\geq 1\), \(M\geq 1\) NEWLINE\[NEWLINE D_Lu=(u_{x_1},\dots ,u_{x_N},| x| ^\alpha u_{y_1},\dots ,| x| ^\alpha u_{y_M}), NEWLINE\]NEWLINE NEWLINE\[NEWLINE div_L\overrightarrow{F}=\sum\limits^N_{i=1}F_{i,x_i}+| x| ^\alpha \sum\limits^M_{i=1}F_{i+N,y_i}.NEWLINE\]NEWLINE The author prove local Hölder regularity of weak solution of this problem.
0 references