The thermodynamic formalism for the de Rham function: increment method (Q2901875)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The thermodynamic formalism for the de Rham function: increment method |
scientific article; zbMATH DE number 6062357
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The thermodynamic formalism for the de Rham function: increment method |
scientific article; zbMATH DE number 6062357 |
Statements
The thermodynamic formalism for the de Rham function: increment method (English)
0 references
31 July 2012
0 references
Hölder regularity
0 references
Hausdorff dimension
0 references
increments
0 references
thermodynamic formalism
0 references
Let \(F\in L^{1}({\mathbb R})\) be the unique continuous solution of the functional equation NEWLINE\[NEWLINEF(x) = F(3x)+\frac{1}{3}(F(3x-1)+F(3x+1)) + \frac{2}{3} (F(3x-2)+F(3x+2))NEWLINE\]NEWLINE satisfying condition the \(\int F(x)dx=1\). \(F\) is nowhere differentiable. Let NEWLINE\[NEWLINE \alpha(x)=\liminf_{h\to 0}\frac{\log |F(x+h)-F(x)|}{\log|h|},NEWLINE\]NEWLINE \(E^{\alpha}=\{x: \alpha(x)=\alpha\},\) and \(d(\alpha)\) is the Hausdorff dimension of \(E^{\alpha}\). The author investigates the function \(d(\alpha)\) and proves certain formulas for its evaluation.
0 references