On the geometric properties of Cesàro spaces (Q2901895)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the geometric properties of Cesàro spaces |
scientific article; zbMATH DE number 6062374
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the geometric properties of Cesàro spaces |
scientific article; zbMATH DE number 6062374 |
Statements
On the geometric properties of Cesàro spaces (English)
0 references
31 July 2012
0 references
Banach lattices
0 references
Cesàro spaces
0 references
complemented subspaces
0 references
copies of \(\ell^q\)-spaces
0 references
sublinear operators
0 references
By definition, the Cesàro space \(\mathrm{Ces}_p[0,1]\) consists of all measurable functions \(f\) on \([0,1]\) with NEWLINE\[NEWLINE\|f\|_{C_p}= \left[\int_0^1\left(\frac{1}{t}\int_0^1|f(s)|ds\right)^pdt\right]^{1/p}<\infty, \quad 1\leq p<\infty.NEWLINE\]NEWLINE \textit{S. V. Astashkin} and \textit{L. Maligranda} [Indag. Math., New Ser. 20, No. 3, 329--379 (2009; Zbl 1200.46027)] give a description of the set of all \(q\) for which isomorphic copies of \(\ell^q\) are contained in \(\mathrm{Ces}_p[0,1]\). The author considers complemented copies of \(\ell^q\). He shows that \(\mathrm{Ces}_p[0,1]\) contains a complemented copy of \(\ell^q\) if and only if either \(q=1\) or \(q=p\). As a corollary, he obtains that \(\mathrm{Ces}_p[0,1]\), \(p>1\), contains no complemented copy of \(L_q[0,1]\), \(q>1\).
0 references