On the geometric properties of Cesàro spaces (Q2901895)

From MaRDI portal





scientific article; zbMATH DE number 6062374
Language Label Description Also known as
English
On the geometric properties of Cesàro spaces
scientific article; zbMATH DE number 6062374

    Statements

    On the geometric properties of Cesàro spaces (English)
    0 references
    31 July 2012
    0 references
    Banach lattices
    0 references
    Cesàro spaces
    0 references
    complemented subspaces
    0 references
    copies of \(\ell^q\)-spaces
    0 references
    sublinear operators
    0 references
    0 references
    By definition, the Cesàro space \(\mathrm{Ces}_p[0,1]\) consists of all measurable functions \(f\) on \([0,1]\) with NEWLINE\[NEWLINE\|f\|_{C_p}= \left[\int_0^1\left(\frac{1}{t}\int_0^1|f(s)|ds\right)^pdt\right]^{1/p}<\infty, \quad 1\leq p<\infty.NEWLINE\]NEWLINE \textit{S. V. Astashkin} and \textit{L. Maligranda} [Indag. Math., New Ser. 20, No. 3, 329--379 (2009; Zbl 1200.46027)] give a description of the set of all \(q\) for which isomorphic copies of \(\ell^q\) are contained in \(\mathrm{Ces}_p[0,1]\). The author considers complemented copies of \(\ell^q\). He shows that \(\mathrm{Ces}_p[0,1]\) contains a complemented copy of \(\ell^q\) if and only if either \(q=1\) or \(q=p\). As a corollary, he obtains that \(\mathrm{Ces}_p[0,1]\), \(p>1\), contains no complemented copy of \(L_q[0,1]\), \(q>1\).
    0 references
    0 references

    Identifiers